Toposes as Homotopy Groupoids
نویسنده
چکیده
Please be advised that this information was generated on 2017-02-10 and may be subject to change.
منابع مشابه
Sets in homotopy type theory
Homotopy Type Theory may be seen as an internal language for the ∞category of weak ∞-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞-groupoids with contractible connected components, and thereby it includes (much of)...
متن کاملModalities in homotopy type theory
Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a “localization” higher inductive...
متن کاملUnivalence for inverse diagrams and homotopy canonicity
We describe a homotopical version of the relational and gluing models of type theory, and generalize it to inverse diagrams and oplax limits. Our method uses the Reedy homotopy theory on inverse diagrams, and relies on the fact that Reedy fibrant diagrams correspond to contexts of a certain shape in type theory. This has two main applications. First, by considering inverse diagrams in Voevodsky...
متن کاملOn the homotopy type of Lie groupoids
We propose a notion of groupoid homotopy for generalized maps. This notion of groupoid homotopy generalizes the notions of natural transformation and strict homotopy for functors. The groupoid homotopy type of a Lie groupoid is shown to be invariant under Morita equivalence. As an application we consider orbifolds as groupoids and study the orbifold homotopy between orbifold maps induced by the...
متن کاملVan Kampen theorems for toposes
In this paper we introduce the notion of an extensive 2-category, to be thought of as a “2-category of generalized spaces”. We consider an extensive 2-category K equipped with a binary-product-preserving pseudofunctor C : K op → CAT, which we think of as specifying the “coverings” of our generalized spaces. We prove, in this context, a van Kampen theorem which generalizes and refines one of Bro...
متن کامل