Adversarial Hierarchical-Task Network Planning for Real-Time Adversarial Games

نویسندگان

  • Santiago Ontañón
  • Michael Buro
چکیده

Real-time strategy (RTS) games are hard from an AI point of view because they have enormous state spaces, combinatorial branching factors, allow simultaneous and durative actions, and players have very little time to choose actions. For these reasons, standard game tree search methods such as alphabeta search or Monte Carlo Tree Search (MCTS) are not sufficient by themselves to handle these games. This paper presents an alternative approach called Adversarial Hierarchical Task Network (AHTN) planning that combines ideas from game tree search with HTN planning. We present the basic algorithm, relate it to existing adversarial hierarchical planning methods, and present new extensions for simultaneous and durative actions to handle RTS games. We also present empirical results for the μRTS game, comparing it to other state of the art search algorithms for RTS games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Adversarial Hierarchical Task Network Planning in Real-Time Strategy Games

The application of artificial intelligence (AI) to real-time strategy (RTS) games includes considerable challenges due to the very large state spaces and branching factors, limited decision times, and dynamic adversarial environments involved. To address these challenges, hierarchical task network (HTN) planning has been extended to develop a method denoted as adversarial HTN (AHTN), and this m...

متن کامل

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Unsupervised Learning of HTNs in Complex Adversarial Domains

While Hierarchical Task Networks are frequently cited as flexible and powerful planning models, they are often ignored due to the intensive labor cost for experts/programmers, due to the need to create and refine the model by hand. While recent work has begun to address this issue by working towards learning aspects of an HTN model from demonstration, or even the whole framework, the focus so f...

متن کامل

An Adversarial Planning Approach to Go

Approaches to computer game playing based on (typically α−β) search of the tree of possible move sequences combined with an evaluation function have been successful for many games, notably Chess. For games with large search spaces and complex positions, such as Go, these approaches are less successful and we are led to seek alternative approaches. One such alternative is to model the goals of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015