Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles
نویسندگان
چکیده
Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. Here, we showed that elevated temperature increases free cytosolic Ca2+ [Ca2+]f from RYR (ryanodine receptor)/UNC-68 in vivo in the muscles of an experimental model animal, the nematode Caenorhabditis elegans This subsequently leads to mitochondrial fragmentation and dysfunction, and breakdown of myofilaments similar to rhabdomyolysis. In addition, treatment with an inhibitor of RYR (dantrolene) or activation of FoxO (Forkhead box O)/DAF-16 is effective against heat-induced muscle damage. Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. To gain insight into heat-induced muscle breakdown, we investigated alterations of Ca2+ homeostasis and mitochondrial morphology in vivo in body-wall muscles of C. elegans exposed to elevated temperature. Heat stress for 3 hr at 35° increased the concentration of [Ca2+]f, and led to mitochondrial fragmentation and subsequent dysfunction in the muscle cells. A similar mitochondrial fragmentation phenotype is induced in the absence of heat stress by treatment with a calcium ionophore, ionomycin. Mutation of the unc-68 gene, which encodes the ryanodine receptor that is linked to Ca2+ release from the sarcoplasmic reticulum, could suppress the mitochondrial dysfunction, muscle degeneration, and reduced mobility and life span induced by heat stress. In addition, in a daf-2 mutant, in which the DAF-16/FoxO transcription factor is activated, resistance to calcium overload, mitochondrial fragmentation, and dysfunction was observed. These findings reveal that heat-induced Ca2+ accumulation causes mitochondrial damage and consequently induces muscle breakdown.
منابع مشابه
Action potentials drive body wall muscle contractions in Caenorhabditis elegans.
The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel-dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we s...
متن کاملGenomic Organization, Expression, and Analysis of the Troponin C Gene pat-10 of Caenorhabditis elegans
We have cloned and characterized the troponin C gene, pat-10 of the nematode Caenorhabditis elegans. At the amino acid level nematode troponin C is most similar to troponin C of Drosophila (45% identity) and cardiac troponin C of vertebrates. Expression studies demonstrate that this troponin is expressed in body wall muscle throughout the life of the animal. Later, vulval muscles and anal muscl...
متن کاملA Role for Peroxidasin PXN-1 in Aspects of C. elegans Development
The Caenorhabditis elegans peroxidasins, PXN-1 and PXN-2, are extracellular peroxidases; pxn-2 is involved in muscle-epidermal attachment during embryonic morphogenesis and in specific axon guidance. Here we investigate potential roles of the other homologue of peroxidasin, pxn-1, in C. elegans. A pxn-1 deletion mutant showed high lethality under heat-stress conditions. Using a transcriptional ...
متن کاملEffects of mitochondrial dynamics genes, fzo-1 and drp-1, on dopaminergic neurodegeneration induced by environmental exposure in Caenorhabditis elegans, as a model of Parkinson’s disease
Parkinson’s disease (PD) is caused by degeneration of the dopaminergic neurons; environmental toxicants are hypothesized to play a role in PD etiology. Environmental toxicants can cause mitochondrial dysfunction through mitochondrial DNA (mtDNA) damage and production of reactive oxygen species. Serial ultraviolet C (UVC) radiation causes an accumulation of mtDNA damage and 6-hydroxydopamine (6-...
متن کاملMuscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans.
Ryanodine receptor channels regulate contraction of striated muscle by gating the release of calcium ions from the sarcoplasmic reticulum. Ryanodine receptors are expressed in excitable and non-excitable cells of numerous species, including the nematode C. elegans. Unlike vertebrates, which have at least three ryanodine receptor genes, C. elegans has a single gene encoded by the unc-68 locus. W...
متن کامل