Combination of optical and LiDAR satellite imagery with forest inventory data to improve wall-to-wall assessment of growing stock in Italy

نویسندگان

  • Fabio Maselli
  • Marta Chiesi
  • Matteo Mura
  • Marco Marchetti
  • Piermaria Corona
  • Gherardo Chirici
چکیده

The acquisition of information about growing stock is a fundamental step in the framework of forest management planning and scenario modeling, besides being essential for assessing the amount of carbon stored within forest ecosystems. Gallaun et al. (2010) produced a pan-European map of forest growing stock by the combination of ground and remotely sensed data. The first objective of the current paper is to assess the accuracy of this map versus the ground data collected during the latest Italian National Forest Inventory (INFC). Next, a new wall-to-wall estimation of growing stock is obtained by combining ground measurements of four regional forest inventories with the CORINE land cover map of Italy and the global canopy height map derived from Geoscience Laser Altimeter System (GLAS) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. More particularly, the growing stock measurements of the four inventories are stratified by ecosystem type and extended over all Italian forest areas through the application of locally weighted regressions to the GLAS/MODIS canopy height map. When compared to the INFC measurements, the new map shows higher accuracy than that by Gallaun et al., particularly for high growing stock values. The coefficient of determination between estimated and INFC growing stocks is improved by about 0.5, whilst the mean square error is reduced from 90 to 48 m ha. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB) can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR) techniques have been proven that can accurately capture both horizontal and vertical f...

متن کامل

Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico

BACKGROUND Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed for understanding and managing processes involved in the carbon cycle and supporting international policies for climate change mitigation and adaption. Furthermore, these products provide important baseline data for the development of sustainable management strategies to local stakeholders...

متن کامل

Using Optical Satellite Data and Airborne Lidar Data for a Nationwide Sampling Survey

A workflow for combining airborne lidar, optical satellite data and National Forest Inventory (NFI) plots for cost efficient operational mapping of a nationwide sample of 5 × 5 km squares in the National Inventory of Landscapes in Sweden (NILS) landscape inventory in Sweden is presented. Since the areas where both satellite data and lidar data have a common data quality are limited, and impose ...

متن کامل

A multi-stage inventory scheme for REDD inventories in tropical countries

Reducing Emissions from Deforestation and Forest Degradation (REDD) is an international effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forest and invest in low-carbon paths to sustainable development. Of critical importance is the estimation of carbon stocks in forests and their dynamics. The paper prese...

متن کامل

Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

Quantification of tropical forest above-ground biomass (AGB) over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+) projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia) through correlating airborne li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014