Connection Coefficients of Orthogonal Polynomials with Applications to Classical Orthogonal Polynomials

نویسنده

  • RYSZARD SZWARC
چکیده

New criteria for nonnegativity of connection coefficients between to systems of orthogonal polynomials are given. The results apply to classical orthogonal polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Connection and linearization coefficients of the Askey-Wilson polynomials

The linearization problem is the problem of finding the coefficients Ck (m,n) in the expansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third sequence of polynomials Rk (x), Pn(x)Qm(x) = n+m ∑ k=0 Ck (m,n)Rk (x). The polynomials Pn , Qm and Rk may belong to three different polynomial families. In the case P = Q = R, we get the (standard ) linearization or Clebsch-Gordan...

متن کامل

Inversion Formulas Involving Orthogonal Polynomials and Some of Their Applications

We derive inversion formulas involving orthogonal polynomials which can be used to find coefficients of differential equations satisfied by certain generalizations of the classical orthogonal polynomials. As an example we consider special symmetric generalizations of the Hermite polynomials.

متن کامل

On Moments of Classical Orthogonal Polynomials

In this work, using the inversion coefficients and some connection coefficients between some polynomial sets, we give explicit representations of the moments of all the orthogonal polynomials belonging to the Askey-Wilson scheme. Generating functions for some of these moments are also provided.

متن کامل

The Spectral Connection Matrix for Any Change of Basis within the Classical Real Orthogonal Polynomials

The connection problem for orthogonal polynomials is, given a polynomial expressed in the basis of one set of orthogonal polynomials, computing the coefficients with respect to a different set of orthogonal polynomials. Expansions in terms of orthogonal polynomials are very common in many applications. While the connection problem may be solved by directly computing the change–of–basis matrix, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009