Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
نویسندگان
چکیده
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.
منابع مشابه
Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics
Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crys...
متن کاملTemperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite
The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite yellow phase that hinders its photovoltaic performance. A clear understanding of how the structural parameters af...
متن کاملLead iodide perovskite light-emitting field-effect transistor
Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated b...
متن کاملExciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases
The small exciton binding energy of perovskite suggests that the long-lived photoluminescence and slow recovery of the ground state bleaching of the tetragonal phase at room temperature results primarily from the decay of free charges rather than the decay of the initially created excitons. Here we demonstrate the ground state bleaching recovery of the orthorhombic phase of methylammonium lead ...
متن کاملThermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains.
A liquid to solid phase transition of methylammonium lead triiodide (MAPbI3) under methylamine (MA) atmosphere at elevated temperatures was discovered, and used to form high quality and uniform thin films containing large, low defect crystal grains tens of microns in size.
متن کامل