Implicit Runge-Kutta Methods for Orbit Propagation
نویسندگان
چکیده
Accurate and efficient orbital propagators are critical for space situational awareness because they drive uncertainty propagation which is necessary for tracking, conjunction analysis, and maneuver detection. We have developed an adaptive, implicit Runge-Kuttabased method for orbit propagation that is superior to existing explicit methods, even before the algorithm is potentially parallelized. Specifically, we demonstrate a significant reduction in the computational cost of propagating objects in low-Earth orbit, geosynchronous orbit, and highly elliptic orbit. The new propagator is applicable to all regimes of space, and additional features include its ability to estimate and control the truncation error, exploit analytic and semi-analytic methods, and provide accurate ephemeris data via built-in interpolation. Finally, we point out the relationship between collocation-based implicit Runge-Kutta and Modified Chebyshev-Picard Iteration.
منابع مشابه
Implicit Runge-kutta Methods for Uncertainty Propagation
Accurate and efficient orbital propagators are critical for space situational awareness because they drive uncertainty propagation which is necessary for tracking, conjunction analysis, and maneuver detection. Existing sigma pointor particle-based methods for uncertainty propagation use explicit numerical integrators for propagating the closely spaced orbital states as part of the prediction st...
متن کاملAas 12-214 a Survey of Symplectic and Collocation Integration Methods for Orbit Propagation
Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation meth...
متن کاملAdditive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows
This paper is concerned with time-stepping numerical methods for computing sti semi-discrete systems of ordinary di erential equations for transient hypersonic ows with thermo-chemical nonequilibrium. The sti ness of the equations is mainly caused by the viscous ux terms across the boundary layers and by the source terms modeling nite-rate thermo-chemical processes. Implicit methods are needed ...
متن کاملBandlimited implicit Runge–Kutta integration for Astrodynamics
We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit ...
متن کاملGPU Implementation of Implicit Runge-Kutta Methods
Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...
متن کامل