Semiparametric models for missing covariate and response data in regression models.
نویسندگان
چکیده
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a sensitivity analysis for model misspecification of the missing covariate distribution and/or missing data mechanism. The semiparametric model consists of a generalized additive model (GAM) for the covariate distribution and/or missing data mechanism. Penalized regression splines are used to express the GAMs as a generalized linear mixed effects model, in which the variance of the corresponding random effects provides an intuitive index for choosing between the semiparametric and parametric model. Maximum likelihood estimates are then obtained via the EM algorithm. Simulations are given to demonstrate the methodology, and a real data set from a melanoma cancer clinical trial is analyzed using the proposed methods.
منابع مشابه
Non-parametric and semiparametric models for missing covariates in parametric regression Abstracts
s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...
متن کاملNon-parametric and semiparametric models for missing covariates in parametric regression Abstracts
s Robustness of covariate modeling for the missing covariate problem in parametric regression is studied under the MAR assumption. For a simple missing covariate pattern, non-parametric likelihood is proposed and is shown to yield a consistent and semiparametrically efficient estimator for the regression parameter. Total robustness is achieved in this situation. For more general missing covaria...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملEfficiency transfer for regression models with responses missing at random
We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the conditional distribution of Y given X can be estimated efficiently using complete case analysis, i.e., one can simply omit incomplete cases and work with an appropriate efficient estimator ...
متن کاملتحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند
Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2006