Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash

نویسندگان

  • C. Textor
  • M. Herzog
  • William I. Rose
چکیده

The aggregation of volcanic ash particles within the eruption column of explosive eruptions has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the umbrella cloud. However, the information on the processes leading to aggregate formation are still either lacking or very incomplete. We examine the fate of ash particles through numerical experiments with the plume model ATHAM (Active Tracer High resolution Atmospheric Model) in order to determine the conditions that promote ash particle aggregation. In this paper we describe the microphysics and parameterization of ash and hydrometeors. In a companion paper (this issue) we use this information in a series of numerical experiments. The parameterization includes the condensation of water vapor in the rising eruption column. The formation of liquid and solid hydrometeors and the effect of latent heat release on the eruption column dynamics are considered. The interactions of hydrometeors and volcanic ash within the eruption column that lead to aggregate formation are simulated for the first time within a rising eruption column. The microphysical parameterization follows a modal approach. The hydrometeors are described by two size classes, each of which is divided into a liquid and a frozen category. By analogy with the hydrometeor classification, we specify four categories of volcanic ash particles. We imply that volcanic particles are active as condensation nuclei for water and ice formation. Ash can be contained in all categories of hydrometeors, thus forming mixed particles of any composition reaching from mud rain to accretionary lapilli. Collisions are caused by gravitational capture of particles with different fall velocity. Coalescence of hydrometeor–ash aggregates is assumed to be a function of the hydrometeor mass fraction within the mixed particles. The parameterization also includes simplified descriptions of electrostatics and salinity effects. D 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volcanic particle aggregation in explosive eruption columns. Part II: Numerical experiments

The goal of this paper is to determine the parameters that control the aggregation efficiency and the growth rate of volcanic particles within the eruption column. Numerical experiments are performed with the plume model ATHAM (Active Tracer High resolution Atmospheric Model). In this study we employ the parameterizations described in a companion paper (this issue). The presence of hydrometeors...

متن کامل

Hail formation triggers rapid ash aggregation in volcanic plumes

During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-character...

متن کامل

Using Wind Data to Predict the Risk of Volcanic Eruption: An Example from Damavand Volcano, Iran

Damavand volcano is located 60 km to the East North- East of Tehran. It is a dormant stratovolcano outcrop in the Alborz Mountains of northern Iran and is the highest mountain (5670 m) in the Middle East and West Asia. Mazandaran Province, one of the most populous provinces by population density, Semnan and Gorgan provinces further east are neighbours of the Damavand. Volcanism in Damavand goes...

متن کامل

Injection of gases into the stratosphere by explosive volcanic eruptions

[1] Explosive eruptions can inject large amounts of volcanic gases into the stratosphere. These gases may be scavenged by hydrometeors within the eruption column, and high uncertainties remain regarding the proportion of volcanic gases, which eventually reach the stratosphere. These are caused by the difficulties of directly sampling explosive volcanic eruption columns and by the lack of labora...

متن کامل

Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

Repeated aircraft hazards in Alaska related to volcanic clouds have resulted in the use of a mobile C-band radar devoted to volcanic-cloud monitoring. The radar is located at Kenai, in range of several volcanoes in the Cook Inlet area. Three significant eruptions from the Crater Peak vent of Mount Spurr volcano (about 80 km from Kenai) in 1992 provided the first tests of the radar. The system c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006