On the orbital stability of Gaussian solitary waves in the log-KdV equation

نویسندگان

  • Rémi Carles
  • Dmitry Pelinovsky
چکیده

We consider the logarithmic Korteweg–de Vries (log–KdV) equation, which models solitary waves in anharmonic chains with Hertzian interaction forces. By using an approximating sequence of global solutions of the regularized generalized KdV equation in H(R) with conserved L norm and energy, we construct a weak global solution of the log–KdV equation in a subset of H(R). This construction yields conditional orbital stability of Gaussian solitary waves of the log–KdV equation, provided uniqueness and continuous dependence of the constructed solution holds. Furthermore, we study the linearized log–KdV equation at the Gaussian solitary wave and prove that the associated linearized operator has a purely discrete spectrum consisting of simple purely imaginary eigenvalues in addition to the double zero eigenvalue. The eigenfunctions, however, do not decay like Gaussian functions but have algebraic decay. Using numerical approximations, we show that the Gaussian initial data do not spread out but produce visible radiation at the left slope of the Gaussian-like pulse in the time evolution of the linearized log–KdV equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas

The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.    

متن کامل

Compressive and rarefactive dust-ion acoustic solitary waves in four components ‎quantum plasma with dust-charge variation

Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a ‎collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged ‎dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...

متن کامل

Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...

متن کامل

Long-time stability of small FPU solitary waves

Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentials are described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitude approximation is usually performed on the time scale, for which dynamics of the KdV equation is defined. We show how to extend justification analysis on longer time intervals provided dyn...

متن کامل

On the stability of internal waves

The extended KdV equation ut + uux + αuux + uxxx = 0 is widely used as a model describing internal waves in ideal fluids. The equation admits a family of negative and positive solitary waves c. These solitary waves exhibit the typical broadening effect seen in internal waves. It is shown here that all solitary-wave solutions of the extended KdV equation are orbitally stable. The proof of stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017