Understanding Coronal Heating and Solar Wind Acceleration: Case for in Situ Near-sun Measurements

نویسندگان

  • D. J. McComas
  • M. Velli
  • W. S. Lewis
  • L. W. Acton
  • M. Balat-Pichelin
  • V. Bothmer
  • R. B. Dirling
  • W. C. Feldman
  • G. Gloeckler
  • S. R. Habbal
  • D. M. Hassler
  • I. Mann
  • W. H. Matthaeus
  • R. L. McNutt
  • R. A. Mewaldt
  • N. Murphy
  • L. Ofman
  • E. C. Sittler
  • C. W. Smith
  • T. H. Zurbuchen
چکیده

[1] The solar wind has been measured directly from 0.3 AU outward, and the Sun’s atmosphere has been imaged from the photosphere out through the corona. These observations have significantly advanced our understanding of the influence of the Sun’s varying magnetic field on the structure and dynamics of the corona and the solar wind. However, how the corona is heated and accelerated to produce the solar wind remains a mystery. Answering these fundamental questions requires in situ observations near the Sun, from a few solar radii (RS) out to 20 RS, where the internal, magnetic, and turbulent energy in the coronal plasma is channeled into the bulk energy of the supersonic solar wind. A mission to make such observations has long been a top priority of the solar and space physics community. The recent Solar Probe study has proven that such a mission is technically feasible and can be accomplished within reasonable resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coronal Heating versus Solar Wind Acceleration

Parker’s initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind’s mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in brin...

متن کامل

Coronal Holes and the Solar Wind

Coronal holes are the darkest regions of the ultraviolet and X-ray Sun, both on the disk and above the limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties of coronal holes and how these measurements have been used to put constraints on theoretical models of coro...

متن کامل

Wave Modeling of the Solar Wind

The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent mod...

متن کامل

Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence

We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfvén waves that have been partially reflected, then damped by anis...

متن کامل

Coronal Holes and the High-speed Solar Wind

Coronal holes are the lowest density plasma components of the Sun’s outer atmosphere, and are associated with rapidly expanding magnetic fields and the acceleration of the high-speed solar wind. Spectroscopic and polarimetric observations of the extended corona, coupled with interplanetary particle and radio sounding measurements going back several decades, have put strong constraints on possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007