Somatically mutated forms of a major anti-p-azophenylarsonate antibody variable region with drastically reduced affinity for p-azophenylarsonate. By-products of an antigen-driven immune response?

نویسندگان

  • T Manser
  • B Parhami-Seren
  • MN Margolies
  • ML Gefter
چکیده

The pivotal role played by antigen in the clonal selection of B cells for initial participation in an immune response is well established. Antigen selective mechanisms ensure that antigen-binding antibodies are produced during all stages of the immune response. However, antibodies that lack specificity for the immunogen might also be produced during the course of an antigen-driven immune response . It has been suggested that, through idiotype-antiidiotype network interactions within the immune system, production of antibodies that lack specificity for the immunogen but that share idiotopes with antigen-binding antibodies could result (1). In addition, data obtained by a number of investigators suggest that somatic mutation of antibody V region genes occurs at a rate of 10(-3)/basepair/cell division in B cells participating in an immune response (2, 3). One outcome of such V region structural alteration could be antibodies that lack, or have drastically reduced affinity for the immunogen . We sought to identify and characterize some of the antibody by-products of the antigen-driven immune response that are expected to be created by the mechanisms described above.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatic evolution of variable region structures during an immune response.

Immunization of strain A mice with p-azophenylarsonate-conjugated protein stimulates B cells that synthesize anti-p-azophenylarsonate antibodies. A large fraction of these cells produce antibodies with variable (V) regions encoded by a single heavy chain V gene segment together with multiple combinations of diversity, heavy chain joining, light chain variable, and light chain joining gene segme...

متن کامل

Altering the antibody repertoire via transgene homologous recombination: evidence for global and clone-autonomous regulation of antigen-driven B cell differentiation

Antibody VH transgenes containing small amounts of natural 5' and 3' flanking DNA undergo nonreciprocal homologous recombination with the endogenous Igh locus in B cells. The resulting "hybrid" heavy chain loci are generated at a low frequency but are fully functional, undergoing somatic hypermutation and isotype class switching. We have used this recombination pathway to introduce a somaticall...

متن کامل

Altering the Antibody Repertoire via T~nsgene Homologous Recombination: Evidence for Global and Clone-autonomous Regulation of Antigen-driven B Cell Differentiation

Antibody VH transgenes containing small amounts of natural 5' and 3' flanking DNA undergo nonreciprocal homologous recombination with the endogenous Igh locus in B cells. The resulting "hybrid" heavy chain loci are generated at a low frequency but are fully functional, undergoing somatic hypermutation and isotype class switching. We have used this recombination pathway to introduce a somaticall...

متن کامل

Structural analysis of mutants of high-affinity and low-affinity p-azophenylarsonate-specific antibodies generated by alanine scanning of heavy chain complementarity-determining region 2.

Alanine scanning was used to determine the affinity contributions of 10 side chain amino acids (residues at position 50-60 inclusive) of H chain complementarity-determining region 2 (HCDR2) of the somatically mutated high-affinity anti-p-azophenylarsonate Ab, 36-71. Each mutated H chain gene was expressed in the context of mutated (36-71L) and the unmutated (36-65L) L chains to also assess the ...

متن کامل

Structural requirements for a specificity switch and for maintenance of affinity using mutational analysis of a phage-displayed anti-arsonate antibody of Fab heavy chain first complementarity-determining region.

We previously showed that a single mutation at heavy (H) position 35 of Abs specific for p-azophenylarsonate (Ars) resulted in acquisition of binding to the structurally related hapten p-azophenylsulfonate (Sulf). To explore the sequence and structural diversity of the H chain first complementarity-determining region (HCDR1) in modulating affinity and specificity, positions 30-36 in Ab 36-65 we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 166  شماره 

صفحات  -

تاریخ انتشار 1987