Manganese and land-use in upland catchments in Scotland.
نویسنده
چکیده
Manganese (Mn) in surface waters is a micronutrient, but elevated concentrations are toxic to fish and impair drinking water quality. In Scotland, undesirable Mn concentrations (> 0.05 mg l(-1)) occur predominantly in upland freshwaters because the acidic pH and organic nature of catchment soils favour Mn mobilisation. The relationship between upland land-use in Scotland and Mn concentrations in surface waters is reviewed. Conifer afforestation is associated with enhanced Mn in runoff. Mn is leached from conifer foliage and litter, and mature conifers enhance acid deposition and loss of Mn from acidified catchment soils. After harvesting, increased soil pools of water-soluble Mn and elevated Mn concentrations in runoff have been observed. Liming, fertiliser addition, drainage ditch construction and ploughing to improve upland pastures, and muirburn on grouse moors may also increase Mn concentrations in runoff, but the evidence is less clear-cut. The extent to which land-use influences Mn concentrations in upland catchments in Scotland is modified by catchment hydrology and soil type. Catchment geology, instream processes and standing water stratification are probably lesser influences on Mn concentrations in surface waters of upland catchments in Scotland. The location of land-use in upland catchments, especially in the riparian zone, is critical in determining its effect on Mn in runoff. Climate change is expected to increase Mn concentrations in runoff from upland catchments in Scotland because of predicted changes in soil hydrology.
منابع مشابه
The Influence of Pedology and Changes in Soil Moisture Status on Manganese Release from Upland Catchments: Soil Core Laboratory Experiments
Manganese (Mn) contamination of drinking water may cause aesthetic and human health problems when concentrations exceed 50 and 500 μg l, respectively. In the UK, the majority of Mn-related drinking water supply failures originate from unpolluted upland catchments. The source of Mn is therefore soil, but the exact mechanisms by which it is mobilised into surface waters remain unknown. Elevated M...
متن کاملManganese in runoff from upland catchments: temporal patterns and controls on mobilization
Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchme...
متن کاملLand use influences on acidification and recovery of freshwaters in Galloway, south-west Scotland
The long term response of surface waters to changes in sulphur deposition and afforestation is investigated for three upland river systems in the Galloway region of south-west Scotland. From 1984-1999, these rivers exhibited a statistically significant decline in non-marine sulphate concentrations in response to reduced acid deposition. This reduction in non-marine sulphate was, however, insuff...
متن کاملEvaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentrat...
متن کاملTwo Modelling Approaches for Predicting Water and Salt Generation to Upland Streams: BC2C & 2CSalt
Predicting the impact of land-use change on water and salt generation from upland areas at a catchment scale is a difficult task. Across large catchments there are often limited field measurements, and so predictions are forced to rely on modelling. However, at this scale input data for models is usually restricted to information surfaces such as rainfall, geology, and surface topography, and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 265 1-3 شماره
صفحات -
تاریخ انتشار 2001