Compacting Neural Network Classifiers via Dropout Training

نویسندگان

  • Yotaro Kubo
  • George Tucker
  • Simon Wiesler
چکیده

We introduce dropout compaction, a novel method for training feed-forward neural networks which realizes the performance gains of training a large model with dropout regularization, yet extracts a compact neural network for run-time efficiency. In the proposed method, we introduce a sparsity-inducing prior on the per unit dropout retention probability so that the optimizer can effectively prune hidden units during training. By changing the prior hyperparameters, we can control the size of the resulting network. We performed a systematic comparison of dropout compaction and competing methods on several real-world speech recognition tasks and found that dropout compaction achieved comparable accuracy with fewer than 50% of the hidden units, translating to a 2.5x speedup in run-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Mechanical Properties of Self Compacting Polymeric Concrete with Backpropagation Network

Acrylic polymer that is highly stable against chemicals and is a good choice when concrete is subject to chemical attack. In this study, self-compacting concrete (SCC) made using acrylic polymer, nanosilica and microsilica has been investigated. The results of experimental testing showed that the addition of microsilica and acrylic polymer decreased the tensile, compressive and bending strength...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Shakeout: A New Regularized Deep Neural Network Training Scheme

Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. The invention of effective training techniques largely contributes to this success. The so-called "Dropout" training scheme is one of the most powerful tool to reduce over-fitting. From the statistic point of view, Dropout works by implicitly imposing an L2 regularizer on the weights....

متن کامل

Modified Dropout for Training Neural Network

Dropout is a method that prevents overfitting when training deep neural networks. It involves sampling different sub-networks by temporarily removing nodes at random. Dropout works well in practice, but its properties have not been fully explored or theoretically justified. Our project explores the properties of dropout by applying methods used in optimization such as simulated annealing and lo...

متن کامل

Towards dropout training for convolutional neural networks

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.06148  شماره 

صفحات  -

تاریخ انتشار 2016