Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory
نویسندگان
چکیده
Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae activated MYC2 transcription and stimulated expression of the MYC2-branch marker gene VSP2, while it suppressed transcription of ORA59 and the ERF-branch marker gene PDF1.2. Mutant jin1 and jar1-1 plants, which are impaired in the MYC2-branch of the JA pathway, displayed a strongly enhanced expression of both ORA59 and PDF1.2 upon herbivory, indicating that in wild-type plants the MYC2-branch is prioritized over the ERF-branch during insect feeding. Weight gain of P. rapae larvae in a no-choice setup was not significantly affected, but in a two-choice setup the larvae consistently preferred jin1 and jar1-1 plants, in which the ERF-branch was activated, over wild-type Col-0 plants, in which the MYC2-branch was induced. In MYC2- and ORA59-impaired jin1-1/RNAi-ORA59 plants this preference was lost, while in ORA59-overexpressing 35S:ORA59 plants it was gained, suggesting that the herbivores were stimulated to feed from plants that expressed the ERF-branch rather than that they were deterred by plants that expressed the MYC2-branch. The feeding preference of the P. rapae larvae could not be linked to changes in glucosinolate levels. Interestingly, application of larval oral secretion into wounded leaf tissue stimulated the ERF-branch of the JA pathway, suggesting that compounds in the oral secretion have the potential to manipulate the plant response toward the caterpillar-preferred ERF-regulated branch of the JA response. Our results suggest that by activating the MYC2-branch of the JA pathway, plants prevent stimulation of the ERF-branch by the herbivore, thereby becoming less attractive to the attacker.
منابع مشابه
DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory
Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have const...
متن کاملHerbivory in the previous generation primes plants for enhanced insect resistance.
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterp...
متن کاملDifferent Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild Arabidopsis Relative Boechera divaricarpa
BACKGROUND Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostell...
متن کاملJasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes.
Biosynthesis of many plant alkaloids is enhanced by endogenous accumulation and exogenous application of jasmonates, but the general and specific signaling components are not well understood. In Arabidopsis, jasmonate-induced ZIM-domain-containing (JAZ) proteins have recently been found to be critical transcriptional repressors linking CORONATINE INSENSTIVE1 (COI1)-mediated jasmonate perception...
متن کاملRewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs
Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate...
متن کامل