Pertussis toxin activates L-arginine uptake in pulmonary endothelial cells through downregulation of PKC-alpha activity.
نویسندگان
چکیده
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.
منابع مشابه
Pertussis toxin directly activates endothelial cell p42/p44 MAP kinases via a novel signaling pathway.
Bordetella pertussis generates a bacterial toxin utilized in signal transduction investigation because of its ability to ADP ribosylate specific G proteins. We previously noted that pertussis toxin (PTX) directly activates endothelial cells, resulting in disruption of monolayer integrity and intercellular gap formation via a signaling pathway that involves protein kinase C (PKC). We studied the...
متن کاملClassical isoforms of PKC as regulators of CAT-1 transporter activity in pulmonary artery endothelial cells.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l...
متن کاملMediation by protein kinases C and A of Go-linked slow responses of enteric neurons to 5-HT.
5-HT activates the peristaltic reflex and is the neurotransmitter of a subset of myenteric interneurons. Hyperpolarizing afterpotential (AH)/type 2 neurons respond to 5-HT with a long-lived depolarization that is caused by the inhibition of a Ca(2+)-activated K+ conductance (gKCa). This effect is mediated by a G-protein-coupled receptor, 5-HT1P. 5-HT1P agonists specifically activate G alpha o, ...
متن کاملThrombin induces c-fos expression in cultured human endothelial cells by a Ca2(+)-dependent mechanism.
The proto-oncogene c-fos has been implicated in the modulation of various cell functions. We have found that thrombin, a pleiotropic activator of endothelial cells, induced c-fos mRNA in human umbilical vein endothelial cells (HEC). This effect was dose-related (0.05 to 1.0 U/mL) and transient (maximal after 1 hour and negligible within 4 hours). Since thrombin activates phosphoinositide (PI) t...
متن کاملET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells.
In this study, we analyzed in rat myometrial cells the signaling pathways involved in the endothelin (ET)-1-induced extracellular signal-regulated kinase (ERK) activation required for the induction of DNA synthesis. We found that inhibition of protein kinase C (PKC) by Ro-31-8220 abolished ERK activation. Inhibition of phospholipase C (PLC) by U-73122 or of phosphoinositide (PI) 3-kinase by wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004