Linear quasi-randomness of subsets of abelian groups and hypergraphs

نویسندگان

  • Elad Aigner-Horev
  • Hiêp Hàn
چکیده

Quasi-random properties are deterministic properties which capture certain characteristics of random objects. The last decades have seen an extensive e↵ort in the study of this subject which has revealed many connections between di↵erent branches of mathematics and theoretical computer science. For graphs the systematic investigation was initiated by Thomason [27, 28] who studied deterministic graph sequences which exhibit a key property of the binomial random graph G(n, p): uniform edge distribution. Subsequently, in a cornerstone result of the area [8], Chung, Graham and Wilson proved that many graph properties characteristic for G(n, p) are indeed equivalent to a qualitative version of uniform edge distribution. For example, a graph sequence has uniform edge distribution if and only if the number of labelled copies of each fixed graph is about what is expected from the binomial random graph with the same edge density. We refer to [8] for the full statement of the result and to [23] for a survey on the subject.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE NORMALITY OF t-CAYLEY HYPERGRAPHS OF ABELIAN GROUPS

A t-Cayley hypergraph X = t-Cay(G; S) is called normal for a finite group G, if the right regular representationR(G) of G is normal in the full automorphism group Aut(X) of X. In this paper, we investigate the normality of t-Cayley hypergraphs of abelian groups, where S < 4.

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

On the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian

In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.

متن کامل

Maximal subsets of pairwise non-commuting elements of some finite p-groups

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...

متن کامل

Hypergraphs, Quasi-randomness, and Conditions for Regularity

Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2017