Graph Structured Semantic Representation and Learning for Financial News
نویسندگان
چکیده
This study links stock prices of publicly traded companies with online financial news to predict direction of stock price change. Previous work shows this to be an extremely challenging problem. We develop a very high-dimensional representation for news about companies that encodes lexical, syntactic and frame semantic information in graphs. Use of a graph kernel to efficiently compare subgraphs for machine learning provides a uniform feature engineering framework that integrates semantic frames in document representation. Evaluated on a news web archive against two benchmarks, only our approach beats the majority class baseline, and with statistically significant results.
منابع مشابه
Latent semantic learning with structured sparse representation for human action recognition
This paper proposes a novel latent semantic learning method for extracting high-level latent semantics from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of mid-level features, we develop a graph-based...
متن کاملSemantic Feature Representation to Capture News Impact
This paper presents a study where semantic frames are used to mine financial news so as to quantify the impact of news on the stock market. We represent news documents in a novel semantic tree structure and use tree kernel support vector machines to predict the change of stock price. We achieve an efficient computation through linearization of tree kernels. In addition to two binary classificat...
متن کاملDeep learning bank distress from news and numerical financial data
In this paper we focus our attention on the exploitation of the information contained in financial news to enhance the performance of a classifier of bank distress. Such information should be analyzed and inserted into the predictive model in the most efficient way and this task deals with all the issues related to text analysis and specifically analysis of news media. Among the different model...
متن کاملOmniGraph: Rich Representation and Graph Kernel Learning
OmniGraph, a novel representation to support a range of NLP classification tasks, integrates lexical items, syntactic dependencies and frame semantic parses into graphs. Feature engineering is folded into the learning through convolution graph kernel learning to explore different extents of the graph. A high-dimensional space of features includes individual nodes to complex networks. In experim...
متن کاملSemantic Feature Representation to Capture News Impact
Mining natural language text for real world applications can benefit from a data representation that encodes semantic structure. Tree-based features, however, limit the available learning methods. This paper presents a study where semantic frames are used to mine financial news so as to quantify the impact of news on the stock market. We represent news documents in a novel semantic tree structu...
متن کامل