A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts

نویسندگان

  • Julio E. Alvarez-Benitez
  • Richard M. Everson
  • Jonathan E. Fieldsend
چکیده

In extending the Particle Swarm Optimisation methodology to multi-objective problems it is unclear how global guides for particles should be selected. Previous work has relied on metric information in objective space, although this is at variance with the notion of dominance which is used to assess the quality of solutions. Here we propose methods based exclusively on dominance for selecting guides from a nondominated archive. The methods are evaluated on standard test problems and we find that probabilistic selection favouring archival particles that dominate few particles provides good convergence towards and coverage of the Pareto front. We demonstrate that the scheme is robust to changes in objective scaling. We propose and evaluate methods for confining particles to the feasible region, and find that allowing particles to explore regions close to the constraint boundaries is important to ensure convergence to the Pareto front.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation

A multi-objective particle swarm optimization (MOPSO) approach is presented for generating Pareto-optimal solutions for reservoir operation problems. This method is developed by integrating Pareto dominance principles into particle swarm optimization (PSO) algorithm. In addition, a variable size external repository and an efficient elitist-mutation (EM) operator are introduced. The proposed EM-...

متن کامل

A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem

This paper proposes a novel multi-objective model for an unrelated parallel machine scheduling problem considering inherent uncertainty in processing times and due dates. The problem is characterized by non-zero ready times, sequence and machine-dependent setup times, and secondary resource constraints for jobs. Each job can be processed only if its required machine and secondary resource (if a...

متن کامل

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

Entropy Diversity in Multi-Objective Particle Swarm Optimization

Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly ...

متن کامل

Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study

Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005