LOCAL MULTIGRID IN H(curl)
نویسندگان
چکیده
We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a H1(Ω)-context along with local discrete Helmholtz-type decompositions of the edge element space.
منابع مشابه
Local Fourier Analysis of Multigrid for the Curl-Curl Equation
We present a local Fourier analysis of multigrid methods for the two-dimensional curl-curl formulation of Maxwell's equations. Both the hybrid smoother proposed by Hiptmair and the overlapping block smoother proposed by Arnold, Falk and Winther are considered. The key to our approach is the identification of two-dimensional eigenspaces of the discrete curl-curl problem by decou-pling the Fourie...
متن کاملAlgebraic Multigrid for High-Order Hierarchical H(curl) Finite Elements
Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation ba...
متن کاملLocal Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs
Since their popularization in the late 1970s and early 1980s, multigrid methods have been a central tool in the numerical solution of the linear and nonlinear systems that arise from the discretization of many PDEs. In this paper, we present a local Fourier analysis (LFA, or local mode analysis) framework for analyzing the complementarity between relaxation and coarse-grid correction within mul...
متن کاملMultigrid in H (div) and H (curl)
We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spacesH(div) andH(curl) in three dimensions. We show that if appropriate finite element spaces and appropriate additive or multiplicative Schwarz smoothers are used, then the multigrid V-cycle is an efficient solver and preconditioner ...
متن کاملDifferential geometry and multigrid for the div-grad, curl-curl and grad-div equations
This paper is concerned with the application of principles of differential geometry in multigrid for the div-grad, curl-curl and grad-div equations. First, the discrete counterpart of the formulas for edge, face and volume elements are used to derive a sequence of a commuting edge, face and volume prolongator from an arbitrary partition of unity nodal prolongator. The implied coarse topology an...
متن کامل