Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)?
نویسندگان
چکیده
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
منابع مشابه
Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملLoss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase
Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When ag...
متن کاملFibrous link to ALS
Copper–zinc superoxide dismutase (SOD1) is an antioxidant found in cytoplasm. Many different mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis (ALS), a neurodegenerative disease in which increasing motor neuron failure proves fatal. SOD1 aggregates have been found in human spinal cords during autopsies; in mice, similar aggregates are known to have a fibrillar nature ...
متن کاملA seeded propagation of Cu, Zn-superoxide dismutase aggregates in amyotrophic lateral sclerosis
Abnormal accumulation of protein inclusions in motor neurons has been known as a major pathological change in amyotrophic lateral sclerosis (ALS). Increasing numbers of proteins including mutant Cu, Zn-superoxide dismutase (SOD1) have been identified as constituents of pathological inclusions in a form of insoluble fibrillar aggregates. Notably, protein fibrillar aggregates exhibit a self-perpe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 35 شماره
صفحات -
تاریخ انتشار 2013