Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier.

نویسندگان

  • Atsushi Ose
  • Hiroyuki Kusuhara
  • Chihiro Endo
  • Kimio Tohyama
  • Mari Miyajima
  • Satoshi Kitamura
  • Yuichi Sugiyama
چکیده

This study investigated the role of a multispecific organic anion transporter, Oatp1a4/Slco1a4, in drug transport across the blood-brain barrier. In vitro transport studies using human embryonic kidney 293 cells expressing mouse Oatp1a4 identified the following compounds as Oatp1a4 substrates: pitavastatin (K(m) = 8.3 microM), rosuvastatin (K(m) = 12 microM), pravastatin, taurocholate (K(m) = 40 microM), digoxin, ochratoxin A, and [d-penicillamine(2,5)]-enkephalin. Double immunohistochemical staining of Oatp1a4 with P-glycoprotein (P-gp) or glial fibrillary acidic protein demonstrated that Oatp1a4 signals colocalized with P-gp signals partly but not with glial fibrillary acidic protein, suggesting that Oatp1a4 is expressed in both the luminal and the abluminal membranes of mouse brain capillary endothelial cells. The brain-to-blood transport of pitavastatin, rosuvastatin, pravastatin, and taurocholate after microinjection into the cerebral cortex was significantly decreased in Oatp1a4(-/-) mice compared with that in wild-type mice. The blood-to-brain transport of pitavastatin, rosuvastatin, taurocholate, and ochratoxin A, determined by in situ brain perfusion, was significantly lower in Oatp1a4(-/-) mice than in wild-type mice, whereas transport of pravastatin and [D-penicillamine(2,5)]-enkephalin was unchanged. The blood-to-brain transport of digoxin was significantly lower in Oatp1a4(-/-) mice than in wild-type mice only when P-gp was inhibited by N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). Taken together, these results show that Oatp1a4 can mediate the brain-to-blood and blood-to-brain transport of its substrate drugs across the blood-brain barrier. The brain-to-plasma ratio of taurocholate, pitavastatin, and rosuvastatin was close to the capillary volume in wild-type mice, and it was not affected by Oatp1a4 dysfunction. Whether Oatp1a4 can deliver drugs from the blood to the brain remains controversial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice.

The present study investigated the efflux transport systems of organic anions across the blood-brain barrier (BBB) using dehydroepiandrosterone sulfate (DHEAS) as a probe. The elimination of DHEAS from the brain after microinjection into the cerebral cortex was characterized in wild-type mice and mice with deficiency of well characterized organic anion transporters, organic anion-transporting p...

متن کامل

Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier.

Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms ...

متن کامل

Oatp58Dc contributes to blood-brain barrier function by excluding organic anions from the Drosophila brain.

The blood-brain barrier (BBB) physiologically isolates the brain from the blood and, thus, plays a vital role in brain homeostasis. Ion transporters play a critical role in this process by effectively regulating access of chemicals to the brain. Organic anion-transporting polypeptides (Oatps) transport a wide range of amphipathic substrates and are involved in efflux of chemicals across the ver...

متن کامل

Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps).

Organic anion-transporting polypeptides (Oatps) are Na(+)-independent solute carriers for cellular uptake of organic compounds. The purpose of this study is to determine 1) the constitutive mRNA expression of the 15 mouse Oatp genes in 12 tissues, 2) whether there are gender differences in Oatp expression, and 3) the ontogenic expression of Oatps in liver and kidney. The mRNA expression of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2010