On Maximum Intractable Likelihood Estimation
نویسندگان
چکیده
Approximate Bayesian Computation (ABC) may be viewed as an analytic approximation of an intractable likelihood coupled with an elementary simulation step. Considering the first step as an explicit approximation of the likelihood allows, also, maximum-likelihood (or maximum-aposteriori) inference to be conducted, approximately, using essentially the same techniques. Such an approach is developed here and the convergence of this class of algorithms is characterised theoretically. The use of non-sufficient summary statistics is considered. Applying the proposed method to three problems demonstrates good performance. The proposed approach provides an alternative for approximating the maximum likelihood estimator (MLE) in complex scenarios.
منابع مشابه
Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملComparison of computational methods for high dimensional item factor analysis
In this article we conduct a simulation study to compare several methods for estimating confirmatory and exploratory item factor analysis using the software programs Mplus and IRTPRO. When the number of factors is bigger than three or four the standard numerical integration methodology used for computing the maximum-likelihood estimates is intractable due to the exponentially large number of in...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کامل