A ranklet-based image representation for mass classification in digital mammograms.

نویسنده

  • Matteo Masotti
چکیده

Regions of interest (ROIs) found on breast radiographic images are classified as either tumoral mass or normal tissue by means of a support vector machine classifier. Classification features are the coefficients resulting from the specific image representation used to encode each ROI. Pixel and wavelet image representations have already been discussed in one of our previous works. To investigate the possibility of improving classification performances, a novel nonparametric, orientation-selective, and multiresolution image representation is developed and evaluated, namely a ranklet image representation. A dataset consisting of 1000 ROIs representing biopsy-proven tumoral masses (either benign or malignant) and 5000 ROIs representing normal breast tissue is used. ROIs are extracted from the digital database for screening mammography collected by the University of South Florida. Classification performances are evaluated using the area Az under the receiver operating characteristic curve. By achieving Az values of 0.978 +/- 0.003 and 90% sensitivity with a false positive fraction value of 4.5%, experiments demonstrate classification results higher than those reached by the previous image representations. In particular, the improvement on the Az value over that achieved by the wavelet image representation is statistically relevant with the two-tailed p value <0.0001. Besides, owing to the tolerance that the ranklet image representation reveals to variations in the ROIs' gray-level intensity histogram, this approach discloses to be robust also when tested on radiographic images having gray-level intensity histogram remarkably different from that used for training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features.

In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Seco...

متن کامل

Discriminating Mass from Normal Breast Tissue: A Novel Ranklet Image Representation for ROI Encoding

A support vector machine (SVM) classifier is used to determine whether regions of interest (ROIs) found on breast radiographic images contain mass or normal tissue. Before being presented to SVM, ROIs are encoded by means of a specific image representation. The coefficients resulting from the encoding are then used as classification features. Pixel and wavelet image representations have already...

متن کامل

A Ranklet-Based CAD for Digital Mammography

A novel approach to the detection of masses and clustered microcalcification is presented. Lesion detection is considered as a two-class pattern recognition problem. In order to get an effective and stable representation, the detection scheme codifies the image by using a ranklet transform. The vectors of ranklet coefficients obtained are classified by means of an SVM classifier. Our approach h...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 33 10  شماره 

صفحات  -

تاریخ انتشار 2006