The Random Link Approximation for the Euclidean TravelingSalesman
نویسندگان
چکیده
| The traveling salesman problem (TSP) consists of nding the length of the shortest closed tour visiting N \cities". We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution , we nd for the average optimum tour length hLEi = E(d) N 1?1=d 1 + O(1=N)] with E(2) = 0:7120 0:0002 and E(3) = 0:6979 0:0002. We then derive analytical predictions for these quantities using the random link approximation, where the lengths between cities are taken as independent random variables. From the \cavity" equations developed by Krauth, M ezard and Parisi, we calculate the associated random link values RL(d). For d = 1; 2; 3, numerical results show that the random link approximation is a good one, with a discrepancy of less than 2.1% between E(d) and RL(d). For large d, we argue that the approximation is exact up to O(1=d 2) and give a conjecture for E(d), in terms of a power series in 1=d, specifying both leading and subleading coeecients. R esum e. | Le probl eme du voyageur de commerce (TSP) consiste a trouver le chemin ferm e le plus court qui relie N \villes". Nous etudions le TSP euclidien o u les villes sont distribu ees au hasard de mani ere d ecorr el ee dans l'hypercube de c^ ot e 1, en dimension d. En imposant des conditions aux bords p eriodiques et guid es par une universalit e remarquable de la distribution des ki emes voisins, nous trouvons la longueur moyenne du chemin optimal hLEi = E(d) N 1?1=d 1+ O(1=N)], avec E(2) = 0;7120 0;0002 et E(3) = 0;6979 0;0002. Nous etablissons ensuite des pr edictions analytiques sur ces quantit es a l'aide de l'approximation de liens al eatoires, o u les longueurs entre les villes sont des variables al eatoires ind ependantes. Gr^ ace aux equations \cavit e" d evelopp ees par Krauth, M ezard et Parisi, nous obtenons dans le cas de liens al eatoires les valeurs, RL(d), analogues a E(d). Pour d = 1; 2; 3, les r esultats num eriques connrment que l'approximation de liens al eatoires est bonne, conduisant a un ecart inf erieur a 2,1% entre E(d) et RL(d). Pour d grand, nous donnons des arguments montrant que cette approximation est exacte …
منابع مشابه
A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems
Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...
متن کاملComparing Mean Field and Euclidean Matching Problems
Combinatorial optimization is a fertile testing ground for statistical physics methods developed in the context of disordered systems, allowing one to confront theoretical mean field predictions with actual properties of finite dimensional systems. Our focus here is on minimum matching problems, because they are computationally tractable while both frustrated and disordered. We first study a me...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملThe random link approximation for theEuclidean
The traveling salesman problem (TSP) consists of nding the length of the shortest closed tour visiting N \cities." We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution, we nd for the average optimum t...
متن کاملThe Random Link Approximation for the Euclidean Traveling Salesman Problem
The traveling salesman problem (TSP) consists of finding the length of the shortest closed tour visiting N "cities". We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution, we find for the average optim...
متن کامل