Multistage Neural Network Metalearning with Application to Foreign Exchange Rates Forecasting

نویسندگان

  • Kin Keung Lai
  • Lean Yu
  • Wei Huang
  • Shouyang Wang
چکیده

In this study, we propose a multistage neural network metalearning technique for financial time series predication. First of all, an interval sampling technique is used to generate different training subsets. Based on the different training subsets, the different neural network models with different training subsets are then trained to formulate different base models. Subsequently, to improve the efficiency of metalearning, the principal component analysis (PCA) technique is used as a pruning tool to generate an optimal set of base models. Finally, a neural-network-based metamodel can be produced by learning from the selected base models. For illustration, the proposed metalearning technique is applied to foreign exchange rate predication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural-Network-Based Fuzzy Group Forecasting with Application to Foreign Exchange Rates Prediction

This study proposes a novel neural-network-based fuzzy group forecasting model for foreign exchange rates prediction. In the proposed model, some single neural network models are first used as predictors for foreign exchange rates prediction. Then these single prediction results produced by each single neural network models are fuzzified into some fuzzy prediction representations. Subsequently,...

متن کامل

Neural Network Based Forecasting of Foreign Currency Exchange Rates

The foreign currency exchange market is the highest and most liquid of the financial markets, with an estimated $1 trillion traded every day. Foreign exchange rates are the most important economic indices in the international financial markets. The prediction of them poses many theoretical and experimental challenges. This paper reports empirical proof that a neural network model is applicable ...

متن کامل

Comparisons of the Different Frequencies of Input Data for Neural Networks in Foreign Exchange Rates Forecasting

We compare the predication performance of neural networks with the different frequencies of input data, namely daily data, weekly data, monthly data. In the 1 day and 1 week ahead prediction of foreign exchange rates forecasting, the neural networks with the weekly input data performs better than the random walk models. In the 1 month ahead prediction of foreign exchange rates forecasting, only...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006