In Vivo Visualization of Notch1 Proteolysis Reveals the Heterogeneity of Notch1 Signaling Activity in the Mouse Cochlea
نویسندگان
چکیده
Mechanosensory hair cells (HCs) and surrounding supporting cells (SCs) in the mouse cochlea are important for hearing and are derived from the same prosensory progenitors. Notch1 signaling plays dual but contrasting and age-dependent roles in mouse cochlear development: early lateral induction and subsequent lateral inhibition. However, it has been difficult to directly visualize mouse cochlear cells experiencing various levels of Notch1 activity at single cell resolution. Here, we characterized two knock-in mouse lines, Notch1(Cre (Low)/+) and Notch1(Cre (High)/+) , with different Cre recombinase activities, that can detect Notch1 receptor proteolysis or Notch1 activity at high and low thresholds, respectively. Using both lines together with a highly sensitive Cre reporter line, we showed that Notch1 activity is nearly undetectable during lateral induction but increases to medium and high levels during lateral inhibition. Furthermore, we found that within the neonatal organ of Corti, the vast majority of cells that experience Notch1 activity were SCs not HCs, suggesting that HCs kept undetectable Notch1 activity during the entire lineage development. Furthermore, among SC subtypes, ∼85-99% of Deiters' and outer pillar cells but only ∼19-38% of inner pillar cells experience medium and high levels of Notch1 activity. Our results demonstrate that Notch1 activity is highly heterogeneous: 1) between lateral induction and inhibition; 2) between HC and SC lineages; 3) among different SC subtypes; 4) among different cells within each SC subtype. Such heterogeneity should elucidate how the development of the cochclear sensory epithelium is precisely controlled and how HC regeneration can be best achieved in postnatal cochleae.
منابع مشابه
Investigating the inhibitory effect of miR-34a, miR-449a, miR-1827, and miR-106b on target genes including NOTCH1, c-Myc, and CCND1 in human T cell acute lymphoblastic leukemia clinical samples and cell line
Objective(s): microRNAs are small non-coding molecules that regulate gene expression in various biological processes. T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy accompanied with genetic aberrations and accounts for 20% of children’s and adult’s ALL. Notch signaling pathway dysregulation occurs in 60% of T-ALL cases. In the present study, we aimed to de...
متن کاملOveractivation of Notch1 Signaling Induces Ectopic Hair Cells in the Mouse Inner Ear in an Age-Dependent Manner
BACKGROUND During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited ...
متن کاملNotch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice.
The role of the Notch signaling pathway in tumor development is complex, with Notch1 functioning either as an oncogene or as a tumor suppressor in a context-dependent manner. To further define the role of Notch1 in tumor development, we systematically surveyed for tumor suppressor activity of Notch1 in vivo. We combined the previously described Notch1 intramembrane proteolysis-Cre (Nip1::Cre) a...
متن کاملExtensive Supporting Cell Proliferation and Mitotic Hair Cell Generation by In Vivo Genetic Reprogramming in the Neonatal Mouse Cochlea.
UNLABELLED The generation of hair cells (HCs) from the differentiation of proliferating supporting cells (SCs) appears to be an ideal approach for replacing lost HCs in the cochlea and is promising for restoring hearing after damage to the organ of Corti. We show here that extensive proliferation of SCs followed by mitotic HC generation is achieved through a genetic reprogramming process involv...
متن کاملGeneration and characterization of a Notch1 signaling-specific reporter mouse line.
Signaling through the Notch1 receptor is essential for the control of numerous developmental processes during embryonic life as well as in adult tissue homeostasis and disease. Since the outcome of Notch1 signaling is highly context-dependent, and its precise physiological and pathological role in many organs is unclear, it is of great interest to localize and identify the cells that receive ac...
متن کامل