Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming.
نویسندگان
چکیده
Tissue organization and pattern formation within a multicellular organism rely on coordinated cell division and cell-fate determination. In animals, cell fates are mainly determined by a cell lineage-dependent mechanism, whereas in plants, positional information is thought to be the primary determinant of cell fates. However, our understanding of cell-fate regulation in plants mostly relies on the histological and anatomical studies on Arabidopsis (Arabidopsis thaliana) roots, which contain a single layer of each cell type in nonvascular tissues. Here, we investigate the dynamic cell-fate acquisition in modified Arabidopsis roots with additional cell layers that are artificially generated by the misexpression of SHORT-ROOT (SHR). We found that cell-fate determination in Arabidopsis roots is a dimorphic cascade with lineage inheritance dominant in the early stage of pattern formation. The inherited cell identity can subsequently be removed or modified by positional information. The instruction of cell-fate conversion is not a fast readout during root development. The final identity of a cell type is determined by the synergistic contribution from multiple layers of regulation, including symplastic communication across tissues. Our findings underline the collaborative inputs during cell-fate instruction.
منابع مشابه
Cell fate specification in Arabidopsis roots requires coordinative action of lineage
Cell fate specification in Arabidopsis roots requires coordinative action of lineage 1 instruction and positional reprogramming 2 3 Qiaozhi Yu, Pengxue Li, Nengsong Liang, Hong Wang, Meizhi Xu, Shuang Wu 4 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China 5 2. Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics 6 Ce...
متن کاملP-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage
Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...
متن کاملChromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis
Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here w...
متن کاملReprogramming of root epidermal cells in response to nutrient deficiency.
Post-embryonic development of the root system is highly plastic to environmental cues, compensating for the sessile lifestyle of plants. The fate of epidermal cells of Arabidopsis roots is particularly responsive to nutritional signals, leading to an increase in the root's surface area in the absence of the essential but immobile minerals iron, phosphate and manganese. The resulting phenotype i...
متن کاملPositional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries
BACKGROUND Cell position rather than cell lineage governs most aspects of development in plants. However, the nature and the origin of positional information remains elusive. Animal epidermal patterning relies in many cases on positional information provided by cell-cell communication. The epidermal layer of the Arabidopsis root is made of alternating files of two cell types and thus presents a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 175 2 شماره
صفحات -
تاریخ انتشار 2017