Image registration by local histogram matching
نویسنده
چکیده
We previously presented an image registration method, referred to hierarchical attribute matching mechanism for elastic registration (HAMMER), which demonstrated relatively high accuracy in inter-subject registration of MR brain images. However, the HAMMER algorithm requires the pre-segmentation of brain tissues, since the attribute vectors used to hierarchically match the corresponding pairs of points are defined from the segmented image. In many applications, the segmentation of tissues might be difficult, unreliable or even impossible to complete, which potentially limits the use of the HAMMER algorithm in more generalized applications. To overcome this limitation, we have used local spatial intensity histograms to design a new type of attribute vector for each point in an intensity image. The histogram-based attribute vector is rotationally invariant, and importantly it also captures spatial information by integrating a number of local intensity histograms from multi-resolution images of original intensity image. The new attribute vectors are able to determine the corresponding points across individual images. Therefore, by hierarchically matching new attribute vectors, the proposed method can perform as successfully as the previous HAMMER algorithm did in registering MR brain images, while providing more generalized applications in registering images of various organs. Experimental results show good performance of the proposed method in registering MR brain images, DTI brain images, CT pelvis images, and MR mouse images. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملColor scene transform between images using Rosenfeld-Kak histogram matching method
In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...
متن کاملA Novel Image Correlation Matching Approach
In this paper we present a novel approach which is combined local invariant feature descriptor named ARPIH (Angular Radial Partitioning Intensity Histogram) with histogram-based similar distance (HSD). The approach succeeds the ARPIH descriptor’s distinctive advantage and provides higher robustness in deformation image matching, such as rotation image, illumination changing image and perspectiv...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملAn Efficient Method for Color Images Edge Detection
The purpose of this paper is to show how the edge histogram descriptor for image that can be efficiently utilized for image matching. Since the edge histogram descriptor recommended for the standard represents only local edge distribution in an image, the matching performance for image retrieval may not be satisfactory. In this paper, to increase the matching performance, we propose to use the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 40 شماره
صفحات -
تاریخ انتشار 2007