An Implicit SPH Formulation for Incompressible Linearly Elastic Solids

نویسندگان

  • Andreas Peer
  • Christoph Gissler
  • Stefan Band
  • Matthias Teschner
چکیده

We propose a novel SPH formulation for deformable solids. Key aspects of our method are implicit elastic forces and an adapted SPH formulation for the deformation gradient that—in contrast to previous work—allows a rotation extraction directly from the SPH deformation gradient. The proposed implicit concept is entirely based on linear formulations. As a linear strain tensor is used, a rotation-aware computation of the deformation gradient is required. In contrast to existing work, the respective rotation estimation is entirely realized within the SPH concept using a novel formulation with incorporated kernel gradient correction for first-order consistency. The proposed implicit formulation and the adapted rotation estimation allow for significantly larger time steps and higher stiffness compared to explicit forms. Performance gain factors of up to one hundred are presented. Incompressibility of deformable solids is accounted for with an ISPH pressure solver. This further allows for a pressure-based boundary handling and a unified processing of deformables interacting with SPH fluids and rigids. Self-collisions are implicitly handled by the pressure solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

IISPH-FLIP for incompressible fluids

We propose to use Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) for pressure projection and boundary handling in Fluid-Implicit-Particle (FLIP) solvers for the simulation of incompressible fluids. This novel combination addresses two issues of existing SPH and FLIP solvers, namely mass preservation in FLIP and efficiency and memory consumption in SPH. First, the SPH component ...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Coupling Elastic Solids with SPH Fluids

We propose a method for handling elastic solids in SPH fluids. Our approach samples triangulated surfaces of solids using boundary particles. To prevent fluid particle tunneling in case of large expansions, additional boundary particles are adaptively generated to prevent gaps and undesired leakage. Furthermore, as an object compresses, particles are adaptively removed to avoid unnecessary comp...

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018