Distributed Latent Variable Models of Lexical Co-occurrences
نویسندگان
چکیده
Low-dimensional representations for lexical co-occurrence data have become increasingly important in alleviating the sparse data problem inherent in natural language processing tasks. This work presents a distributed latent variable model for inducing these low-dimensional representations. The model takes inspiration from both connectionist language models [1, 16] and latent variable models [13, 9]. We give results which show that the new model significantly improves both bigram and trigram models.
منابع مشابه
Document Generation with Hierarchical Latent Tree Models
In most probabilistic topic models, a document is viewed as a collection of tokens and each token is a variable whose values are all the words in a vocabulary. One exception is hierarchical latent tree models (HLTMs), where a document is viewed as a binary vector over the vocabulary and each word is regarded as a binary variable. The use of word variables allows the detection and representation...
متن کاملProbabilistic Latent Sequential Motifs: Discovering Temporal Activity Patterns in Video Scenes
This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns from documents given as word-time occurrences. In this model, documents are represented as a mixture of sequential activity motifs (or topics) and their starting occurrences. The novelties are threefold. First, unlike previous approaches where topics only modeled the co-occurrence of ...
متن کاملProbabilistic models of similarity in syntactic context
This paper investigates novel methods for incorporating syntactic information in probabilistic latent variable models of lexical choice and contextual similarity. The resulting models capture the effects of context on the interpretation of a word and in particular its effect on the appropriateness of replacing that word with a potentially related one. Evaluating our techniques on two datasets, ...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملStructured Generative Models of Continuous Features for Word Sense Induction
We propose a structured generative latent variable model that integrates information from multiple contextual representations for Word Sense Induction. Our approach jointly models global lexical, local lexical and dependency syntactic context. Each context type is associated with a latent variable and the three types of variables share a hierarchical structure. We use skip-gram based word and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005