Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution.

نویسندگان

  • Shigehiro Kuraku
  • Ryo Usuda
  • Shigeru Kuratani
چکیده

The turtle shell is an evolutionary novelty in which the developmental pattern of the ribs is radically modified. In contrast to those of other amniotes, turtle ribs grow laterally into the dorsal dermis to form a carapace. The lateral margin of carapacial primordium is called the carapacial ridge (CR), and is thought to play an essential role in carapace patterning. To reveal the developmental mechanisms underlying this structure, we systematically screened for genes expressed specifically in the CR of the Chinese soft-shelled turtle, Pelodiscus sinensis, using microbead-based differential cDNA analysis and real-time reverse transcription-polymerase chain reaction. We identified orthologs of Sp5, cellular retinoic acid-binding protein-I (CRABP-I), adenomatous polyposis coli down-regulated 1 (APCDD1), and lymphoid enhancer-binding factor-1 (LEF-1). Although these genes are conserved throughout the major vertebrate lineages, comparison of their expression patterns with those in chicken and mouse indicated that these genes have acquired de novo expression in the CR in the turtle lineage. In association with the expression of LEF-1, the nuclear localization of beta-catenin protein was detected in the CR ectoderm, suggesting that the canonical Wnt signaling triggers carapace development. These findings indicate that the acquisition of the turtle shell did not involve the creation of novel genes, but was based on the co-option of pre-existing genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan.

The chelonian carapace is composed of dorsolaterally expanded ribs; an evolutionary change in the rib-patterning program is assumed to be related to this novelty. Turtle embryos exhibit a longitudinal ridge called the carapacial ridge (CR) on the flank, and its histological resemblance to the apical ectodermal ridge of the limb bud implies its inductive activity in the unique patterning of the ...

متن کامل

Hepatocyte growth factor is crucial for development of the carapace in turtles

Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution fr...

متن کامل

Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.

The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that app...

متن کامل

How the turtle forms its shell: a paracrine hypothesis of carapace formation.

We propose a two-step model for the evolutionary origin of the turtle shell. We show here that the carapacial ridge (CR) is critical for the entry of the ribs into the dorsal dermis. Moreover, we demonstrate that the maintenance of the CR and its ability to attract the migrating rib precursor cells depend upon fibroblast growth factor (FGF) signaling. Inhibitors of FGF allow the CR to degenerat...

متن کامل

Development of the turtle plastron, the order-defining skeletal structure.

The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution & development

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2005