Meshless Methods in Dual Analysis: Theoretical and Implementation Issues
نویسندگان
چکیده
Abstract. This paper presents a meshless implementation for the dual analysis of 2D linear elasticity problems. The derivation of the governing system of equations for the discretized equilibrated model is detailed. Crucial implementation issues of the equilibrated algorithm are described. It presents the inf-sup condition for particular cases of essential boundary conditions approximations when the space of Lagrange multipliers belongs to the space of domain nodal unknowns. Several examples with energy and stress verification are demonstrated.
منابع مشابه
Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملStable and Convergent Unsymmetric Meshless Collocation Methods
In the theoretical part of this paper, we introduce a simplified proof technique for error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collocation method. For a numerical implementation of the convergent variation, a previously proposed greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-the-fly data-dependent m...
متن کاملRegularized meshless method for nonhomogeneous problems
The regularized meshless method is a novel boundary-type meshless method but by now has largely been confined to homogeneous problems. In this paper, we apply the regularized meshless method to the nonhomogeneous problems in conjunction with the dual reciprocity technique in the evaluation of the particular solution. Numerical experiments of three benchmark nonhomogeneous problems demonstrate t...
متن کاملA Meshless Method Based on Least-squares Approach for Steady- and Unsteady-state Heat Conduction Problems
The meshless method based on the least-squares approach, the meshless weighted leastsquares (MWLS) method, is extended to solve conduction heat transfer problems. The MWLS formulation is first established for steady-state problems and then extended to unsteady-state problems with time-stepping schemes. Theoretical analysis and numerical examples indicate that larger time steps can be used in th...
متن کامل