Regulated and Polarized PtdIns(3,4,5)P3 Accumulation Is Essential for Apical Membrane Morphogenesis in Photoreceptor Epithelial Cells

نویسندگان

  • Noelia Pinal
  • Deborah C.I. Goberdhan
  • Lucy Collinson
  • Yasuyuki Fujita
  • Iain M. Cox
  • Clive Wilson
  • Franck Pichaud
چکیده

BACKGROUND In a specialized epithelial cell such as the Drosophila photoreceptor, a conserved set of proteins is essential for the establishment of polarity, its maintenance, or both--in Drosophila, these proteins include the apical factors Bazooka, D-atypical protein kinase C, and D-Par6 together with D-Ecadherin. However, little is known about the mechanisms by which such apical factors might regulate the differentiation of the apical membrane into functional domains such as an apical-most stack of microvilli or more lateral sub-apical membrane. RESULTS We show that in photoreceptors Bazooka (D-Par3) recruits the tumor suppressor lipid phosphatase PTEN to developing cell-cell junctions (Zonula Adherens, za). za-localized PTEN controls the spatially restricted accumulation of optimum levels of the lipid PtdIns(3,4,5)P3 within the apical membrane domain. This in turn finely tunes activation of Akt1, a process essential for proper morphogenesis of the light-gathering organelle, consisting of a stack of F-actin rich microvilli within the apical membrane. CONCLUSIONS Spatially localized PtdIns(3,4,5)P3 mediates directional sensing during neutrophil and Dictyostelium chemotaxis. We conclude that a conserved mechanism also operates during photoreceptor epithelial cell morphogenesis in order to achieve normal differentiation of the apical membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PtdIns-3,4,5-P3 A Regulatory Nexus between Tyrosine Kinases and Sustained Calcium Signals

in Figure 1. During a tyrosine kinase-mediated calcium signal, PLCg is recruited to an upstream tyrosine kinase via its SH2 domains, producing at least part of its tyrosine phosphorylation along with proximity to the plasma membrane where its substrate PtdIns-4,5-P2 resides. Andrew M. Scharenberg and Jean-Pierre Kinet Laboratory of Allergy and Immunology Department of Pathology Beth Israel Deac...

متن کامل

The inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation.

The spatial activation of phosphoinositide 3-kinase (PI3-kinase) signaling at the axon growth cone generates phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3), which localizes and facilitates Akt activation and stimulates GSK-3beta inactivation, promoting microtubule polymerization and axon elongation. However, the molecular mechanisms that govern the spatial down-regulation of PtdIns(...

متن کامل

Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression.

Phosphatidylinositol (3,4,5) trisphosphate [PtdIns(3,4,5)P3] is a lipid second messenger, produced by Type I phosphoinositide 3-kinases (PI 3-kinases), which mediates intracellular responses to many growth factors. Although PI 3-kinases are implicated in events at both the plasma membrane and intracellular sites, including the nucleus, direct evidence for the occurrence of PtdIns(3,4,5)P3 at no...

متن کامل

A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and its application to measure insulin-stimulated PtdIns(3,4,5)P3 production in rat skeletal muscle in vivo.

The pivotal role of phosphatidylinositol 3-kinase (PI 3-kinase) in signal transduction has been well established in recent years. Receptor-regulated forms of PI 3-kinase are thought to phosphorylate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the 3-position of the inositol ring to give the putative lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4, 5)P3)....

متن کامل

Hydrogen Sulfide Prevents Hydrogen Peroxide-Induced Activation of Epithelial Sodium Channel through a PTEN/PI(3,4,5)P3 Dependent Pathway

Sodium reabsorption through the epithelial sodium channel (ENaC) at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2) stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) in the apical membrane. Here we report that H2S can antagonize H2O2-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006