Irreducible Components of Rigid Spaces
نویسنده
چکیده
Cet article donne les fondements de la théorie globale des composantes irréductibles d’espaces analytiques rigides sur un corps complet k. Nous prouvons l’excellence d’anneaux locaux sur les espaces rigides sur k. De là, nous prouvons les théorèmes standards d’existence et nous montrons la compatibilité avec les notions des composantes irréductibles pour les schémas et les schémas formels. Le comportement par rapport à l’extension de corps base est aussi étudié. Il est souvent nécessaire de compléter les techniques de théorie des schémas par d’autres arguments algébriques et géométriques.
منابع مشابه
Non-archimedean Analytification of Algebraic Spaces
1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations. We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source of motivation is the relationship between algebraic spaces and analytic s...
متن کاملMODULI SPACES OF p-DIVISIBLE GROUPS
We study the global structure of moduli spaces of quasi-isogenies of p-divisible groups introduced by Rapoport and Zink. We determine their dimensions and their sets of connected components and of irreducible components. If the isocrystals of the p-divisible groups are simple, we compute the cohomology of the moduli space. As an application we determine which moduli spaces are smooth.
متن کاملThe Global Structure of Moduli Spaces of Polarized p-Divisible Groups
We study the global structure of moduli spaces of quasiisogenies of polarized p-divisible groups introduced by Rapoport and Zink. Using the corresponding results for non-polarized p-divisible groups from a previous paper, we determine their dimensions and their sets of connected components and of irreducible components. 2000 Mathematics Subject Classification: 14L05, 14K10 (Primary) 14G35 (Seco...
متن کاملThe Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras
In this note, we consider degenerations between complex 2-step nilpotent Lie algebras of dimension 7 within the variety N 2 7 . This allows us to obtain the rigid algebras in N 2 7 , whose closures give the irreducible components of the variety.
متن کاملAn Analysis of the Multiplicity Spaces in Branching of Symplectic Groups
Branching of symplectic groups is not multiplicity-free. We describe a new approach to resolving these multiplicities that is based on studying the associated branching algebra B. The algebra B is a graded algebra whose components encode the multiplicities of irreducible representations of Sp2n−2 in irreducible representations of Sp2n. Our rst theorem states that the map taking an element of Sp...
متن کامل