Convolution Kernel over Packed Parse Forest
نویسندگان
چکیده
This paper proposes a convolution forest kernel to effectively explore rich structured features embedded in a packed parse forest. As opposed to the convolution tree kernel, the proposed forest kernel does not have to commit to a single best parse tree, is thus able to explore very large object spaces and much more structured features embedded in a forest. This makes the proposed kernel more robust against parsing errors and data sparseness issues than the convolution tree kernel. The paper presents the formal definition of convolution forest kernel and also illustrates the computing algorithm to fast compute the proposed convolution forest kernel. Experimental results on two NLP applications, relation extraction and semantic role labeling, show that the proposed forest kernel significantly outperforms the baseline of the convolution tree kernel.
منابع مشابه
Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
This paper proposes to use a convolution kernel over parse trees to model syntactic structure information for relation extraction. Our study reveals that the syntactic structure features embedded in a parse tree are very effective for relation extraction and these features can be well captured by the convolution tree kernel. Evaluation on the ACE 2003 corpus shows that the convolution kernel ov...
متن کاملExploring syntactic structured features over parse trees for relation extraction using kernel methods
Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper proposes to use the convolution kernel over parse trees together with support vector machines to model syntactic structured information for relation extraction. Compared with linear kernels, tree kernels can effe...
متن کاملTree Kernel-based SVM with Structured Syntactic Knowledge for BTG-based Phrase Reordering
Structured syntactic knowledge is important for phrase reordering. This paper proposes using convolution tree kernel over source parse tree to model structured syntactic knowledge for BTG-based phrase reordering in the context of statistical machine translation. Our study reveals that the structured syntactic features over the source phrases are very effective for BTG constraint-based phrase re...
متن کاملLocality-Convolution Kernel and Its Application to Dependency Parse Ranking
We propose a Locality-Convolution (LC) kernel in application to dependency parse ranking. The LC kernel measures parse similarities locally, within a small window constructed around each matching feature. Inside the window it makes use of a position sensitive function to take into account the order of the feature appearance. The similarity between two windows is calculated by computing product ...
متن کاملA Semantic Kernel for Predicate Argument Classification
Automatically deriving semantic structures from text is a challenging task for machine learning. The flat feature representations, usually used in learning models, can only partially describe structured data. This makes difficult the processing of the semantic information that is embedded into parse-trees. In this paper a new kernel for automatic classification of predicate arguments has been d...
متن کامل