Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice.
نویسندگان
چکیده
Higher plants acquire iron (Fe) from the rhizosphere through two strategies. Strategy II, employed by graminaceous plants, involves secretion of phytosiderophores (e.g. deoxymugineic acid in rice [Oryza sativa]) by roots to solubilize Fe(III) in soil. In addition to taking up Fe in the form of Fe(III)-phytosiderophore, rice also possesses the strategy I-like system that may absorb Fe(II) directly. Through mutant screening, we isolated a rice mutant that could not grow with Fe(III)-citrate as the sole Fe source, but was able to grow when Fe(II)-EDTA was supplied. Surprisingly, the mutant accumulated more Fe and other divalent metals in roots and shoots than the wild type when both were supplied with EDTA-Fe(II) or grown under water-logged field conditions. Furthermore, the mutant had a significantly higher concentration of Fe in both unpolished and polished grains than the wild type. Using the map-based cloning method, we identified a point mutation in a gene encoding nicotianamine aminotransferase (NAAT1), which was responsible for the mutant phenotype. Because of the loss of function of NAAT1, the mutant failed to produce deoxymugineic acid and could not absorb Fe(III) efficiently. In contrast, nicotianamine, the substrate for NAAT1, accumulated markedly in roots and shoots of the mutant. Microarray analysis showed that the expression of a number of the genes involved in Fe(II) acquisition was greatly stimulated in the naat1 mutant. Our results demonstrate that disruption of deoxymugineic acid biosynthesis can stimulate Fe(II) acquisition and increase iron accumulation in rice.
منابع مشابه
Iron Biofortification of Myanmar Rice
Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in t...
متن کاملEthylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa
Plants employ two distinct strategies to obtain iron (Fe) from the soil. In Strategy I but not Strategy II plants, Fe limitation invokes ethylene production which regulates Fe deficiency responses. Oryza sativa (rice) is the only graminaceous plant described that possesses a Strategy I-like system for iron uptake as well as the classic Strategy II system. Ethylene production of rice roots was s...
متن کاملCloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants.
Nicotianamine aminotransferase (NAAT), the key enzyme involved in the biosynthesis of mugineic acid family phytosiderophores (MAs), catalyzes the amino transfer of nicotianamine (NA). MAs are found only in graminaceous plants, although NA has been detected in every plant so far investigated. Therefore, this amino transfer reaction is the first step in the unique biosynthesis of MAs that has evo...
متن کاملNicotianamine, a Novel Enhancer of Rice Iron Bioavailability to Humans
BACKGROUND Polished rice is a staple food for over 50% of the world's population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world. METHODOLOGY/PRIN...
متن کاملThere and back again, or always there? The evolution of rice combined strategy for Fe uptake
Fe UPTAKE MECHANISMS AND TRANSCRIPTIONAL CONTROL Iron (Fe) is an essential micronutrient for almost all living organisms and represents one of the most versatile metals in biology, being involved in many ubiquitous metabolic processes such as respiration and photosynthesis, and required as a cofactor for numerous enzymes (Sperotto et al., 2010; Grillet et al., 2014a). In plants, Fe deficiency c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 145 4 شماره
صفحات -
تاریخ انتشار 2007