Floer Homology of Brieskorn Homology Spheres

نویسنده

  • NIKOLAI SAVELIEV
چکیده

Every Brieskorn homology sphere (p; q; r) is a double cover of the 3{sphere ramiied over a Montesinos knot k(p; q; r). We relate Floer homology of (p; q; r) to certain invariants of the knot k(p; q; r), among which are the knot signature and the Jones polynomial. We also deene an integer valued invariant of integral homology 3{spheres which agrees with the {invariant of W. Neu-mann and L. Siebenmann for Seifert bered homology spheres, and investigate its behavior with respect to homology 4{cobordism. Let p; q, and r be pairwise coprime positive integers. A Brieskorn homology 3{ sphere (p; q; r) is the link of the singularity of f ?1 (0), where f : C 3 ! C is a map of the form f(x; y; z) = x p + y q + z r. The complex conjugation in C 3 acts on (p; q; r) turning it into a double branched cover of S 3 branched over a Montesinos knot k(p; q; r).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floer Homology of Brieskorn Homology Spheres : Solution to Atiyah’s Problem

In this paper we answer the question posed by M. Atiyah, see [12], and give an explicit formula for Floer homology of Brieskorn homology spheres in terms of their branching sets over the 3–sphere. We further show how Floer homology is related to other invariants of knots and 3–manifolds, among which are the μ̄–invariant of W. Neumann and L. Siebenmann and the Jones polynomial. Essential progress...

متن کامل

Lattice Points Inside Rational Simplices and the Casson Invariant of Brieskorn Spheres

From the very beginning, it was apparent that the Seiberg^Witten analogue of the instanton Floer homology of a (Z-)homology 3-sphere is no longer a topological invariant, since it can vary with the metric. W. Chen [2], Y. Lim [7] and Marcolli^Wang [8] have explained the metric dependence of the Euler characteristic of the SWF (1⁄4 Seiberg^Witten^Floer) homology. More precisely, if gi ði 1⁄4 0; ...

متن کامل

A Sheaf-theoretic Model for Sl(2,c) Floer Homology

Given a Heegaard splitting of a three-manifold Y , we consider the SL(2,C) character variety of the Heegaard surface, and two complex Lagrangians associated to the handlebodies. We focus on the smooth open subset corresponding to irreducible representations. On that subset, the intersection of the Lagrangians is an oriented d-critical locus in the sense of Joyce. Bussi associates to such an int...

متن کامل

Floer Homology and Invariants of Homology Cobordism

By using surgery techniques, we compute Floer homology for certain classes of integral homology 3-spheres homology cobordant to zero. We prove that Floer homology is two-periodic for all these manifolds. Based on this fact, we introduce a new integer valued invariant of integral homology 3-spheres. Our computations suggest its homology cobordism invariance.

متن کامل

Nonseparating spheres and twistedHeegaard Floer homology

Heegaard Floer homology was introduced by Ozsváth and Szabó [16]. For nullhomologous knots, there is a filtered version of Heegaard Floer homology, called knot Floer homology; see Ozsváth and Szabó [14] and Rasmussen [18]. Basically, if one knows the information about the knot Floer homology of a knot, then one can compute the Heegaard Floer homology of any manifold obtained by Dehn surgery on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997