Evolution and Expression Patterns of CYC/TB1 Genes in Anacyclus: Phylogenetic Insights for Floral Symmetry Genes in Asteraceae
نویسندگان
چکیده
Homologs of the CYC/TB1 gene family have been independently recruited many times across the eudicots to control aspects of floral symmetry The family Asteraceae exhibits the largest known diversification in this gene paralog family accompanied by a parallel morphological floral richness in its specialized head-like inflorescence. In Asteraceae, whether or not CYC/TB1 gene floral symmetry function is preserved along organismic and gene lineages is unknown. In this study, we used phylogenetic, structural and expression analyses focused on the highly derived genus Anacyclus (tribe Anthemidae) to address this question. Phylogenetic reconstruction recovered eight main gene lineages present in Asteraceae: two from CYC1, four from CYC2 and two from CYC3-like genes. The species phylogeny was recovered in most of the gene lineages, allowing the delimitation of orthologous sets of CYC/TB1 genes in Asteraceae. Quantitative real-time PCR analysis indicated that in Anacyclus three of the four isolated CYC2 genes are more highly expressed in ray flowers. The expression of the four AcCYC2 genes overlaps in several organs including the ligule of ray flowers, as well as in anthers and ovules throughout development.
منابع مشابه
Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order.
PREMISE OF THE STUDY Floral symmetry is a trait of key importance when considering floral diversification because it is thought to play a significant role in plant-pollinator interactions. The CYCLOIDEA/TEOSINTE BRANCHED1 (CYC/TB1)-like genes have been implicated in the development and evolution of floral symmetry in numerous lineages. We thus chose to investigate a possible role for these gene...
متن کاملPositive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family.
Members of the CYCLOIDEA (CYC)/TEOSINTE-BRANCHED1 (TB1) group of transcription factors have been implicated in the evolution of zygomorphic (i.e., bilaterally symmetric) flowers in Antirrhinum and Lotus and the loss of branching phenotype during the domestication of maize. The composite inflorescences of sunflower (Helianthus annuus L. Asteraceae) contain both zygomorphic and actinomorphic (i.e...
متن کاملPhylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots.
Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid...
متن کاملDiversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
Monosymmetry evolved several times independently during flower evolution. In snapdragon (Antirrhinum majus), a key gene for monosymmetry is CYCLOIDEA (CYC), which belongs to the class II TCP gene family encoding transcriptional activators. We address the questions of the evolutionary history of this gene family and of possible recruitment of genes homologous to CYC in floral development and sym...
متن کاملGenetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae
The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and r...
متن کامل