Hemispheric asymmetries of the premotor cortex are task specific as revealed by disruptive TMS during bimanual versus unimanual movements.
نویسندگان
چکیده
The premotor cortex (PMC) is functionally lateralized, such that the left PMC is activated for unimanual movements of either hand, whereas the right PMC is particularly active during complex bimanual movements. Here we ask the question whether the high activation of right PMC in the bimanual context reflects either hemispheric specialization or handedness. Left- and right-handed subjects performed a bimanual antiphase tapping task at different frequencies while transcranial magnetic stimulation (TMS) was used to temporarily disrupt left versus right PMC during complex bimanual movements. For both handedness groups, more disruptions were induced when TMS was applied over the motor nondominant PMC than over the motor dominant PMC or when sham-TMS was used. In a second experiment, right-handers performed complex unimanual tapping with either hand, while TMS was applied to the PMC in both hemispheres. The novel result was that the high susceptibility of the motor nondominant PMC was specific to the bimanual context, indicating that hemispheric asymmetries of the PMC depend on the bimanual versus unimanual nature of the motor task. We hypothesize that asymmetries of PMC involvement in bimanual control reflect interhemispheric interactions, whereby the motor nondominant PMC appears to prevent motor cross talk arising from the dominant hemisphere.
منابع مشابه
Effect of transcranial magnetic stimulation on bimanual movements.
Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of "resetting index" (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanua...
متن کاملInterhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation.
Previous studies have shown that transcranial magnetic stimulation (TMS) of the sensorimotor cortex can induce a suppression of cutaneous perception from the fingers of the contralateral hand. In this work, 17 normal subjects were submitted to focal TMS of frontal and parietal scalp sites of each hemisphere. TMS was delivered at two interstimulus intervals (20 and 40 ms) following a cutaneous e...
متن کاملMotor control in simple bimanual movements: a transcranial magnetic stimulation and reaction time study.
OBJECTIVE Simple reaction time (RT) can be influenced by transcranial magnetic stimulation (TMS) to the motor cortex. Since TMS differentially affects RT of ipsilateral and contralateral muscles a combined RT and TMS investigation sheds light on cortical motor control of bimanual movements. METHODS Ten normal subjects and one subject with congenital mirror movements (MM) were investigated wit...
متن کاملfMRI study of bimanual coordination.
Eleven right-handed subjects performed uni- and bimanual tapping tasks. Hemodynamic responses as measured with functional magnetic resonance imaging (fMRI) in the primary somato-motor cortex (SMC) showed that during bimanual activity the SMC contralateral to the hand taking the faster rate was more strongly activated than the SMC contralateral to hand taking the slower rate. There were no asymm...
متن کاملTwo Distinct Ipsilateral Cortical Representations for Individuated Finger Movements
Movements of the upper limb are controlled mostly through the contralateral hemisphere. Although overall activity changes in the ipsilateral motor cortex have been reported, their functional significance remains unclear. Using human functional imaging, we analyzed neural finger representations by studying differences in fine-grained activation patterns for single isometric finger presses. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2010