MRLR: Multi-level Representation Learning for Personalized Ranking in Recommendation

نویسندگان

  • Zhu Sun
  • Jie Yang
  • Jie Zhang
  • Alessandro Bozzon
  • Yu Chen
  • Chi Xu
چکیده

Representation learning (RL) has recently proven to be effective in capturing local item relationships by modeling item co-occurrence in individual user’s interaction record. However, the value of RL for recommendation has not reached the full potential due to two major drawbacks: 1) recommendation is modeled as a rating prediction problem but should essentially be a personalized ranking one; 2) multi-level organizations of items are neglected for fine-grained item relationships. We design a unified Bayesian framework MRLR to learn user and item embeddings from a multi-level item organization, thus benefiting from RL as well as achieving the goal of personalized ranking. Extensive validation on real-world datasets shows that MRLR consistently outperforms state-of-the-art algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Text Embedding for Personalized Content-based Recommendation

Learning a good representation of text is key to many recommendation applications. Examples include news recommendation where texts to be recommended are constantly published everyday. However, most existing recommendation techniques, such as matrix factorization based methods, mainly rely on interaction histories to learn representations of items. While latent factors of items can be learned e...

متن کامل

Personalized Recommendation Based on Co-Ranking and Query-Based Collaborative Diffusion

In this paper, we present an adaptive graph-based personalized recommendation method based on co-ranking and query-based collaborative diffusion. By utilizing the unique network structure of n-partite heterogeneous graph, we attempt to address the problem of personalized recommendation in a two-layer ranking process with the help of reasonable measure of high and low order relationships and ana...

متن کامل

BPR: Bayesian Personalized Ranking from Implicit Feedback

Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive knearest-neighbor (kNN). Even though these methods are des...

متن کامل

Adaptive Bayesian personalized ranking for heterogeneous implicit feedbacks

Implicit feedbacks have recently received much attention in recommendation communities due to their close relationship with real industry problem settings. However, most works only exploit users’ homogeneous implicit feedbacks such as users’ transaction records from ‘‘bought’’ activities, and ignore the other type of implicit feedbacks like examination records from ‘‘browsed’’ activities. The l...

متن کامل

Study on Personalized Course Generation Based on Layered Recommendation Algorithm

The paper introduces the concept of a layered recommendation system (LRS) based on multi-dimensional feature vectors to implement personalized course generation model and algorithms. In this work, we present a personalized course generation algorithm based on the multi-dimensional feature vectors (PCG-LRS) and hybrid applications by content-based recommendations and collaborative filtering reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017