Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo.

نویسندگان

  • J R Grandis
  • S D Drenning
  • Q Zeng
  • S C Watkins
  • M F Melhem
  • S Endo
  • D E Johnson
  • L Huang
  • Y He
  • J D Kim
چکیده

Field cancerization predisposes the upper aerodigestive tract mucosa to the formation of multiple primary tumors, when exposed to environmental carcinogens. Up-regulation of epidermal growth factor receptor occurs early in squamous cell carcinogenesis and is critical for the loss of growth control in a variety of human cancers, including head and neck squamous cell carcinomas. In these tumor cells in culture, epidermal growth factor receptor stimulation initiates signaling via persistent activation of selective STAT proteins. To determine the timing of Stat3 activation in head and neck carcinogenesis, we studied the expression and constitutive activation of Stat3 in tumors and normal mucosa from patients with head and neck cancer compared with mucosa from controls without cancer. Stat3 was up-regulated and constitutively activated in both primary human head and neck tumors as well as in normal mucosa from these cancer patients compared with control normal mucosa from patients without cancer. In vivo liposome-mediated gene therapy with a Stat3 antisense plasmid efficiently inhibited Stat3 activation, increased tumor cell apoptosis, and decreased Bcl-x(L) expression in a head and neck xenograft model. These findings provide evidence that constitutively activated Stat3 is an early event in head and neck carcinogenesis that contributes to the loss of growth control by an anti-apoptotic mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Epidermal Growth Factor Receptor and PI3K/Akt Signaling Suppresses Cell Proliferation and Survival through Regulation of Stat3 Activation in Human Cutaneous Squamous Cell Carcinoma

Recent studies have emphasized the important role of Stat3 activation in a number of human tumors from the viewpoint of its oncogenic and antiapoptotic activity. In this study, we examined the role and related signaling molecules of Stat3 in the carcinogenesis of human cutaneous squamous cell carcinoma (SCC). In 35 human cutaneous SCC samples, 86% showed overexpression of phosphorylated (p)-Sta...

متن کامل

Effect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line

Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...

متن کامل

Icaritin Reduces Oral Squamous Cell Carcinoma Progression via the Inhibition of STAT3 Signaling

Icaritin, a traditional Chinese medicine, possesses antitumor activity. The current study aimed to investigate icaritin effect and potential mechanism on oral squamous cell carcinoma (OSCC) development. OSCC cells proliferation, apoptosis, and autophagy were analyzed after incubation with icaritin at different concentrations and incubation times. The expressions of proteins related to prolifera...

متن کامل

SIAH2 antagonizes TYK2-STAT3 signaling in lung carcinoma cells

The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) a...

متن کامل

Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells.

JAK2 activity is tightly controlled through a self-inhibitory effect via its JAK homology domain 2 (JH2), which restricts the strength and duration of JAK2/STAT3 signaling under physiological conditions. Although multiple mutations within JAK2, which abrogate the function of JH2 and sustain JAK2 activation, are widely observed in hematological malignancies, comparable mutations have not been de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 8  شماره 

صفحات  -

تاریخ انتشار 2000