Comprehensive linker-scanning mutagenesis of the hepatitis C virus E1 and E2 envelope glycoproteins reveals new structure–function relationships

نویسندگان

  • Małgorzata Rychłowska
  • Ania M. Owsianka
  • Steven K. H. Foung
  • Jean Dubuisson
  • Krystyna Bieńkowska-Szewczyk
  • Arvind H. Patel
چکیده

Despite extensive research, many details about the structure and functions of hepatitis C virus (HCV) glycoproteins E1 and E2 are not fully understood, and their crystal structure remains to be determined. We applied linker-scanning mutagenesis to generate a panel of 34 mutants, each containing an insertion of 5 aa at a random position within the E1E2 sequence. The mutated glycoproteins were analysed by using a range of assays to identify regions critical for maintaining protein conformation, E1E2 complex assembly, CD81 receptor binding, membrane fusion and infectivity. The results, while supporting previously published data, provide several interesting new findings. Firstly, insertion at amino acid 587 or 596 reduced E1E2 heterodimerization without affecting reactivity with some conformation-sensitive mAbs or with CD81, thus implicating these residues in glycoprotein assembly. Secondly, insertions within a conserved region of E2, between amino acid residues 611 and 631, severely disrupted protein conformation and abrogated binding of all conformation-sensitive antibodies, suggesting that the structural integrity of this region is critical for the correct folding of E2. Thirdly, an insertion at Leu-682 specifically affected membrane fusion, providing direct evidence that the membrane-proximal 'stem' of E2 is involved in the fusion mechanism. Overall, our results show that the HCV glycoproteins generally do not tolerate insertions and that there are a very limited number of sites that can be changed without dramatic loss of function. Nevertheless, we identified two E2 insertion mutants, at amino acid residues 408 and 577, that were infectious in the murine leukemia virus-based HCV pseudoparticle system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2

Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...

متن کامل

Evaluation of full length E1 and E2 glycoproteins of HCV expressed in P. pastoris as a protein-based vaccine candidate

Introduction: The development of an effective vaccine against Hepatitis C virus (HCV) is still a target of intensive vaccine research. The HCV envelope proteins E1 and E2 which can induce broadly neutralizing antibodies are the major candidate for this purpose. Different types of expression systems have been used to express these glycoproteins. In this study, an expression system using Pichia p...

متن کامل

Alanine scanning mutagenesis of hepatitis C virus E2 cysteine residues: Insights into E2 biogenesis and antigenicity.

Envelope glycoprotein 2 (E2) of hepatitis C virus contains 18 conserved cysteine (Cys) residues in its ectodomain. By cysteine-alanine mutagenesis and function analysis, six Cys in H77 E2 (C494, C508, C552, C564, C607 and C644) were found to be indispensable for recognition by conformation-dependent mAb H53. Removal of any of these Cys residues did not affect E2 heterodimerization with E1, but ...

متن کامل

Unexpected structure for the N-terminal domain of hepatitis C virus envelope glycoprotein E1

Hepatitis C virus (HCV) infection remains a major health problem worldwide. HCV entry into host cells and membrane fusion are achieved by two envelope glycoproteins, E1 and E2. We report here the 3.5-Å resolution crystal structure of the N-terminal domain of the HCV E1 ectodomain, which reveals a complex network of covalently linked intertwined homodimers that do not harbour the expected trunca...

متن کامل

Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis.

The glycoprotein envelope of alphaviruses consists of two proteins, E1 and E2. E1 is responsible for fusion and E2 is responsible for receptor binding. An atomic structure is available for E1, but one for E2 has not been reported. In this study, transposon linker-insertion mutagenesis was used to probe the function of different domains of E2. A library of mutants, containing 19 amino acid inser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2011