Sensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation

نویسندگان

  • Matthew Rhudy
  • Yu Gu
  • Jason N. Gross
  • Srikanth Gururajan
  • Marcello R. Napolitano
چکیده

The extended Kalman filter (EKF) and unscented Kalman filter (UKF) for nonlinear state estimation with both additive and nonadditive noise structures are presented and compared. Three different Global Positioning System (GPS)/inertial navigation system (INS) sensor fusion formulations for attitude estimation are used as case studies for the nonlinear state estimation problem. A diverse set of actual flight data collected from research unmanned aerial vehicles was used as empirical data for this study. Roll and pitch estimation results were comparedwith independent measurements from amechanical vertical gyroscope to evaluate the performance. The performance of the EKF and UKF is compared in terms of noise assumptions, covariance matrix tuning, sampling rate, initialization error, GPS outages, robustness to inertial measurement unit bias and scale factors, and linearization. Similar sensitivity for this GPS/INS attitude estimation problem was found between the EKF and UKF for most cases. Small differences were seen between EKF and UKF for initialization error and GPS outages: the UKF was found to be more robust to inertial measurement unit calibration errors, and the EKF was determined to be more computationally efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Robust Kalman filtering for small satellite attitude estimation in the presence of measurement faults

In normal working conditions it is possible to achieve sufficient attitude estimation accuracy for a satellite using regular Kalman filter algorithm. On the other hand, when there is a fault in the measurements, the Kalman filter fails in providing the required accuracy and may even collapse over time. In this paper, a Robust Kalman filtering method is proposed for the attitude estimation probl...

متن کامل

Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation

Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...

متن کامل

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulat...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Aerospace Inf. Sys.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013