Compressed EEG Acquisition with Limited Channels using Estimated Signal Correlation

نویسندگان

  • J. V. Satyanarayana
  • A. G. Ramakrishnan
چکیده

Nearby scalp channels in multi-channel EEG data exhibit high correlation. A question that naturally arises is whether it is required to record signals from all the electrodes in a group of closely spaced electrodes in a typical measurement setup. One could save on the number of channels that are recorded, if it were possible to reconstruct the omitted channels to the accuracy needed for identifying the relevant information (say, spectral content in the signal), required to carry out a preliminary diagnosis. We address this problem from a compressed sensing perspective and propose a measurement and reconstruction scheme. Working with publicly available EEG database, we put our scheme to experiment and illustrate that if it is only a matter of estimating the frequency content of the signal in various EEG bands, then all the channels need not be recorded. We have achieved an average error below 15% between the original and reconstructed signals with respect to estimation of the spectral content in the delta, theta and alpha bands. We have demonstrated that channels in the 10-10 system of electrode placement can be estimated, with an error less than 10% using recordings on the sparser 10-20 system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of EEG from limited channel acquisition using estimated signal correlation

4 Nearby scalp channels in multi-channel EEG data exhibit high correlation. A question that naturally arises is whether it is required to record signals from all the electrodes in a group of closely spaced electrodes in a typical measurement setup. One could save on the number of channels that are recorded, if it were possible to reconstruct the omitted channels to the accuracy needed for ident...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

An Energy Efficient Compressed Sensing Framework for the Compression of Electroencephalogram Signals

The use of wireless body sensor networks is gaining popularity in monitoring and communicating information about a person's health. In such applications, the amount of data transmitted by the sensor node should be minimized. This is because the energy available in these battery powered sensors is limited. In this paper, we study the wireless transmission of electroencephalogram (EEG) signals. W...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1407.1285  شماره 

صفحات  -

تاریخ انتشار 2014