Alterations of Gene Expression and Glutamate Clearance in Astrocytes Derived from an MeCP2-Null Mouse Model of Rett Syndrome
نویسندگان
چکیده
Rett syndrome (RTT) is a neurodevelopmetal disorder associated with mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. MeCP2-deficient mice recapitulate the neurological degeneration observed in RTT patients. Recent studies indicated a role of not only neurons but also glial cells in neuronal dysfunction in RTT. We cultured astrocytes from MeCP2-null mouse brain and examined astroglial gene expression, growth rate, cytotoxic effects, and glutamate (Glu) clearance. Semi-quantitative RT-PCR analysis revealed that expression of astroglial marker genes, including GFAP and S100β, was significantly higher in MeCP2-null astrocytes than in control astrocytes. Loss of MeCP2 did not affect astroglial cell morphology, growth, or cytotoxic effects, but did alter Glu clearance in astrocytes. When high extracellular Glu was added to the astrocyte cultures and incubated, a time-dependent decrease of extracellular Glu concentration occurred due to Glu clearance by astrocytes. Although the shapes of the profiles of Glu concentration versus time for each strain of astrocytes were grossly similar, Glu concentration in the medium of MeCP2-null astrocytes were lower than those of control astrocytes at 12 and 18 h. In addition, MeCP2 deficiency impaired downregulation of excitatory amino acid transporter 1 and 2 (EAAT1/2) transcripts, but not induction of glutamine synthetase (GS) transcripts, upon high Glu exposure. In contrast, GS protein was significantly higher in MeCP2-null astrocytes than in control astrocytes. These findings suggest that MeCP2 affects astroglial genes expression in cultured astrocytes, and that abnormal Glu clearance in MeCP2-deficient astrocytes may influence the onset and progression of RTT.
منابع مشابه
Metabolic Fingerprints of Altered Brain Growth, Osmoregulation and Neurotransmission in a Rett Syndrome Model
BACKGROUND Rett syndrome (RS) is the leading cause of profound mental retardation of genetic origin in girls. Since RS is mostly caused by mutations in the MECP2 gene, transgenic animal models such as the Mecp2-deleted ("Mecp2-null") mouse have been employed to study neurological symptoms and brain function. However, an interdisciplinary approach drawing from chemistry, biology and neuroscience...
متن کاملHippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome.
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2). Here we demonstrate that the Mecp2-null mouse model of Rett syndrome shows an age-dependent impairment in hippocampal CA1 long-term potentiation induced by tetanic or theta-burst stimulation. Long-term depression induced by repetit...
متن کاملMeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavio...
متن کاملMicroduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...
متن کاملThe MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability.
Rett syndrome is an autism-spectrum disorder caused by loss of function mutations within the gene encoding methyl CpG-binding protein 2 (MeCP2). While subtle decreases in synaptic plasticity have been detected within cortical and hippocampal neurons of Mecp2-null mice, only minimal information exists regarding how the loss of MeCP2 affects network activity in the brain. To address this issue, w...
متن کامل