Analysis of LMS-Newton adaptive filtering algorithms with variable convergence factor

نویسندگان

  • Paulo S. R. Diniz
  • Marcello Luiz Rodrigues de Campos
  • Andreas Antoniou
چکیده

An analysis of two LMS-Newton adaptive filtering algorithms with variable convergence factor is presented. The relations of these algorithms with the conventional recursive least-squares algorithm are first addressed. Their performance in stationary and nonstationary environments is then studied and closed-form formulas for the excess mean-square error (MSE) are derived. The paper deals, in addition, with the effects of roundoff errors for the case of fixed-point arithmetic. Specifically, closedform formulas for the excess MSE caused by quantization are obtained. The paper concludes with experimental results that demonstrate the validity of the analysis presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

The Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...

متن کامل

Image Restoration with Two-Dimensional Adaptive Filter Algorithms

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...

متن کامل

A finite wordlength analysis of an LMS-Newton adaptive filtering algorithm

AbdvactThe effects of quantization in an LMS-Newton adaptive filtering algorithm are investigated. The algorithm considered uses an optimum convergence factor, that forces the output ayoclteriori error to become zero in each iteration. The prOpagation of errors due to quantization in the internal variables of the algorithm is investigated and a closed-form formula for the excess mean square err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1995