Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations with 3-morpholino-sydnonimine and atrial natriuretic peptide.
نویسندگان
چکیده
PURPOSE This study explores at which level of the guanylate cyclase pathway oxygen modulates retinal pericyte relaxation induced by nitric oxide (NO). METHODS Bovine retinal microvascular pericytes were grown on silicone. On silicone, pericyte contractile tone induces wrinkles. Drug-induced relaxation was quantified as a reduced number of wrinkles after exposure to 3-morpholino-sydnonimine (SIN-1) or atrial natriuretic peptide (ANP) in the absence or in the presence of either 0.3 microM methylene blue (MB), a guanylate cyclase inhibitor, or 10 microM hemoglobin, a NO scavenger; and under 100% oxygen (hyperoxia), ambient air (normoxia), or 100% nitrogen (hypoxia). RESULTS Pericytes were relaxed with SIN-1 and ANP in a concentration-dependent manner (EC50: 0.1 microM and 0.01 microM, respectively). Relaxations induced by SIN-1 or ANP were inhibited (P < 0.001) by MB, whereas hemoglobin inhibited only SIN-1 relaxations (P < 0.001). Relaxations induced by SIN-1, but not by ANP were increased (P < 0.001) under hypoxia and decreased (P = 0.002) under hyperoxia. CONCLUSIONS SIN-1 and ANP relax pericytes through the activation of guanylate cyclase (inhibited by MB), but only SIN-1 through an extracellular release of NO (inhibited by hemoglobin). That oxygen only modulates pericyte relaxations induced by SIN-1 (NO-mediated) but not those induced by ANP suggests that an interaction between oxygen and NO might participate in the capillary network's blood-flow modulation according to local tissue oxygen tension.
منابع مشابه
Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle.
A 26 amino acid synthetic peptide fragment of atrial natriuretic factor (ANF) relaxed isolated rabbit aortic segments in which the endothelium was either intact or functionally destroyed. The relaxations were temporally associated with increases in levels of cGMP with no change in the levels of cAMP. The ANF-induced increases in cGMP were also observed in aortic segments pretreated with calcium...
متن کاملAtrial natriuretic factor significantly contributes to the mineralocorticoid escape phenomenon. Evidence for a guanylate cyclase-mediated pathway.
The mechanism underlying the mineralocorticoid escape phenomenon remains unknown. To assess the possible contribution of natriuretic peptides to mineralocorticoid escape, rats were injected with 5 mg deoxycorticosterone acetate for 3 d. Plasma atrial natriuretic factor (ANF) rose to twice basal levels and atrial ANF content decreased significantly by 24 h of treatment. This coincided with renal...
متن کاملCrystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction.
A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracell...
متن کاملModulation of exogenous and endogenous atrial natriuretic peptide by a receptor inhibitor.
Atrial natriuretic peptide is an important peptide hormone of cardiac origin that functions to regulate cardiac preload via the regulation of sodium excretion. This natriuretic action occurs through activation of the particulate guanylyl cyclase-linked natriuretic peptide-A receptor. HS-142-1 is a newly discovered antagonist of the natriuretic peptide-A receptor that permits insight into the fu...
متن کاملCrystal Structure of Hormone-bound Atrial Natriuretic Peptide Receptor Extracellular Domain
A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 38 8 شماره
صفحات -
تاریخ انتشار 1997