Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra

نویسندگان

  • Gholam R. Omidi
  • Ebrahim Vatandoost
  • GHOLAM R. OMIDI
  • EBRAHIM VATANDOOST
چکیده

A graph is said to be determined by its signless Laplacian spectrum if there is no other non-isomorphic graph with the same spectrum. In this paper, it is shown that each starlike tree with maximum degree 4 is determined by its signless Laplacian spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Ela Graphs Determined by Their (signless) Laplacian Spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Graphs determined by their (signless) Laplacian spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017