Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury
نویسندگان
چکیده
Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury.
منابع مشابه
Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury
Adult mammalian peripheral neurons have an intrinsic regrowth capacity in response to axonal injury. The induction of calcium ion (Ca2+) oscillations at an injured site is critical for the regulation of regenerative responses. In polarized neurons, distal axonal segments contain a well-developed endoplasmic reticulum (ER) network that is responsible for Ca2+ homeostasis. Although these characte...
متن کاملAge-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat
Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...
متن کاملEffects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat
Background: Valproic acid (VPA) is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve r...
متن کاملBDNF promotes the axonal regrowth after sciatic nerve crush through intrinsic neuronal capability upregulation and distal portion protection
Nowadays peripheral nerve injurie occurs more common, the outcome is often poor because of the ineffective treatment. Recent researches revealed the duration of BDNF administration acts a positive role during the nerve regeneration, but its potential mechanisms beneath the behavioral recovery and axonal regrowth after peripheral nerve injury are still controversial. To observe the potential mec...
متن کاملLocalization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse
Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...
متن کامل